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Abstract: This short note describes the synthesis of the title compound through 

spontaneous aerobic oxidation of ethyl 2-phenyl-2-(thiazol-2-yl)acetate. Due to the 

prevalence of such functional motifs in biologically active substances, we believe the 

oxidation encountered highlights an important degradation pathway worthy of note. 
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Introduction 

The synthesis of thiazole containing compounds has been the focus of much research due to their 

importance in both pharmaceuticals [1] and agrochemicals [2]. 

Recently, we have reported on the synthesis of 2-substituted thiazoles through a modified Gewald 

reaction [3]. Serendipitously, the natural air oxidation of one of the 2-substituted thiazoles led to an 

interesting hydroxylated thiazole which yields a glycolate moiety. This previously unreported 

compound is important because of its implications regarding metabolic and environmental degradation 

pathways for related compounds. 

The air oxidation of 1 slowly gives rise to the corresponding glycolate 3 when simply left standing 

and open to the atmosphere; the parent compound is stable if preserved under an inert environment. 

The resultant glycolate 3 can be easily isolated through simple column chromatography purification. 
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Some related oxygenations have been previously described, however, these processes have employed 

either a palladium catalyst [4] or strong bases such as Cs2CO3 [5] in the presence of oxygen. 

In this short note we wish to report on the synthesis of ethyl 2-hydroxy-2-phenyl-2-(thiazol-2-

yl)acetate (3) through air oxidation of ethyl 2-phenyl-2-(thiazol-2-yl)acetate (1).  

Experimental Section 

In a 2–5 mL BiotageTM microwave vial, ethyl 2-cyano-2-phenylacetate (1.46 mmol, 1 equiv.) 

was dissolved in trifluoroethanol (6.6 mL). After 2 min stirring, 1,4-dithian-2,5-diol (0.73 mmol, 

0.5 equiv.) was added and the mixture stirred for 5 min before adding triethylamine (1.61 mmol; 

1.1 equiv.) followed by stirring for a further 2 min. The vial was sealed and heated under 

microwave irradiation for 390 min at 60 °C (conventional heating can also be used and also 

takes 390 min for full conversion at 60–62 °C). After cooling, the solvent was evaporated in 

vacuo and the crude residue purified using flash chromatography on silica (EtOAc/hexanes 1:4) 

to obtain ethyl 2-phenyl-2-(thiazol-2-yl)acetate (1) as a yellow oil (0.30 g, 83%). The material 

should be stored under an inert atmosphere.  

The product 1 was left in a sealed vial at ambient temperature and after 7 days the ratio of 

the degradation products was analyzed by 1H-NMR (71:5:24 for 1, 2 and 3 respectively). The ratio 

changed when left for longer periods (>10 months ratio was 26:7:67 for 1, 2 and 3 respectively). The 

oxidation products were isolated using column chromatography with a solvent mixture of 

EtOAc/hexanes (1:4). Four fractions were isolated; 2 (Rf = 0.47, 12 mg, 4%) [6], 1 (Rf = 0.26, 

41 mg, 14%), 3 (Rf = 0.20, 181 mg, 60%) and an unknown polymeric compound (Rf = 0.07,  

48 mg, 16%). 

We hypothesise that the two oxidation derivatives (2 and 3) are generated through initial enolisation 

and reactive trapping of oxygen. Even though no base is present for the deprotonation, the natural 

enolisation is enough for the reactive trapping of oxygen, albeit rather slowly. The resultant peroxide 

intermediate 1b could then potentially cyclise onto the adjacent ester moiety forming a dioxetane 

which, after extrusion of CO2, would furnish product 2 (Scheme 1) [7]. Alternatively, the peroxide 

intermediate 1c could undergo homolytic cleave to form the oxygen-centred radical that abstracts a 

hydrogen atom to form the glycolate 3 [8]. It is also possible that compound 2 is the result of ester 

hydrolysis (water generated in the formation of 3), followed by decarboxylation to yield the simple 2-

benzyl thiazole. Such compounds are known to oxidise to their corresponding ketones [9] or undergo a 

1,2-rearrangement to form an α-hydroperoxy α-alkoxy ketone which would form 2 after spontaneous 

decomposition [10].  

An alternative mechanism, not involving the initial enolisation, would be one including an intial 

homolytic cleavage of the C-H bond, forming a carbon centred radical 1e which can react with oxygen 

to form the peroxo-radical 1f (Scheme 2). The peroxo-radical can either react with a hydrogen atom to 

form 1c as part of the formation of 3, or form the dioxetane intermediate to yield 2. Similar to 

mechanism A, there is nothing that induces the initial homolytic cleavage to initiate the reaction, 

however, we are convinced that considering the long reaction time needed for the transformation, 

small amounts of 1a or 1e are naturally formed due to the acidic C-H bond present in 1.  
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Scheme 1. Putative mechanism A for the formation of 3.  

 

Scheme 2. Putative mechanism B for the formation of 3.  

Spectroscopic Data Compound 3 (Ethyl 2-hydroxy-2-phenyl-2-(thiazol-2-yl)acetate) 

White crystalline solid;  

1H-NMR (700 MHz, CDCl3) δ/ppm 7.82 (d, J = 3.2 Hz, 1H), 7.73–7.70 (m, 2H), 7.40–7.33 (m, 4H), 

4.92 (s, 1H), 4.35 (q, J = 7.1 Hz, 2H), 1.28 (t, J = 7.2 Hz, 3H). 

13C-NMR (176 MHz, CDCl3) δ/ppm 172.3(C), 171.9(C), 142.9(CH), 139.6(C), 128.8(CH), 128.3(CH), 

126.7(CH), 120.7(CH), 79.5(C), 63.8(CH2), 14.1(CH3).  



Molbank 2015  M857 (Page 4)

 

 

IR (neat) ν = 3457 (broad), 3118 (w), 2982 (w), 1730 (s), 1494 (w), 1449 (w), 1242 (s), 1173 (m), 

1097 (m), 1066 (m), 1012 (w), 733 (m), 699 (m) cm−1. 

LC-MS (acetonitrile), Rt. 2.56 min, m/z = 263.9 [M+H]+. HR-MS (+ESI-TOF) calculated for 

C13H14NO3S 264.0694, found 264.0689 (Δ = 1.9 ppm).  

Elemental analysis: calculated for C13H13NO3S C: 59.3%, H: 4.98%, N: 5.32%; measured C: 58.96%, 

H: 4.95%, N: 5.24%. 

Melting range: 95–97 °C (iPrOH). 

Crystal structure, CCDC-1049429 (From iPrOH). CCDC 1049429 contains the supplementary 

crystallographic data for this paper. These data can be obtained free of charge via 

http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 

1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk). 

 

Phenyl(thiazol-2-yl)methanone, 2: 

Pale yellow oil;  

1H-NMR (700 MHz, CDCl3) δ/ppm 8.49–8.45 (m, 2H), 8.10 (d, J = 3.0 Hz, 1H), 7.73 (d, J = 3.0 Hz, 

1H), 7.68–7.61 (m, 1H), 7.56–7.50 (m, 2H). 

13C-NMR (176 MHz, CDCl3) δ/ppm 184.3(C), 168.1(C), 145.0(CH), 135.4(CH), 133.8(CH), 

131.2(CH), 128.6(CH), 126.4(CH). 

LC-MS (acetonitrile), Rt. 2.35 min, m/z = 186.9 [M+H]+. HR-MS (+ESI-TOF) calculated for 

C10H8NOS 190.0327, found 190.0323 (Δ = 2.1 ppm). 
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