Molybdenum(II)-Catalyzed Allylation of Electron-Rich Aromatics and Heteroaromatics

Andrei V. Malkov, ${ }^{\dagger}$ Stuart L. Davis, ${ }^{\dagger}$ Ian R. Baxendale, ${ }^{\dagger, \ddagger}$ William L. Mitchell, ${ }^{\S}$ and Pavel Kočovský*,t
Department of Chemistry, University of Leicester, Leicester LE 1 7RH, U.K., and Receptor Chemistry Unit, GlaxoWellcome PLC, Stevenage, Herts SG1 2NY, U.K.

Received October 29, 1998

Abstract

The stable, readily available mol ybdenum(II) complexes $\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{Br}_{2}\right]_{2}(\mathbf{B})$ and $\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{MeCN})_{2^{-}}$ $\left(\mathrm{SnCl}_{3}\right) \mathrm{Cl}(\mathbf{C})$ have been found to catalyze $\mathrm{C}-\mathrm{C}$ bond-forming allylic substitution with electronrich aromatics (e.g., $\mathbf{1 5}+\mathrm{PhOMe} \boldsymbol{\mathbf { 6 2 }}$) and heteroaromatics (e.g., $\mathbf{1 5}+\mathbf{3 6 \rightarrow \mathbf { 8 8 } \text {) as nucleophiles }}$ under mild conditions (room temperature, $30 \mathrm{~min}-3 \mathrm{~h}$). Remarkable is the para-selectivity for anisole, whereas phenol tends to favor ortho-substitution in certain instances. Mechanistic and stereochemical experiments are indicative of Lewis-acid catalysis rather than a metal templatecontrolled process.

Introduction

Allylic substitution catalyzed by palladium(0) and other transition metal complexes ($\mathrm{Mo}, \mathrm{W}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$) is a well-established methodology in organic synthesis. ${ }^{1}$ This now classical reaction is generally stereospecific and, in the case of $\operatorname{Pd}(0)$ and malonate-type nucleophiles, normally occurs via a double inversion of configuration (inv-inv), invol ving η^{3}-complexes $2(\mathrm{M}=\mathrm{Pd})^{2}$ as intermediates (Scheme 1). With organometallics and a $\operatorname{Pd}(0)^{3}$ or $\mathrm{Ni}(0)^{4}$ catalyst, an inv-ret pathway is observed, resulting in an overall inversion. The complementary ret-inv mechanism has been reported for substrates capable of precoordination of $\mathrm{Pd}(0)^{5-7}$ and for stoichiometric, Mo-(0)-mediated reactions involving isolation of the η^{3} complexes 2. ${ }^{8}$ Finally, the ret-ret alternative has been

[^0]
Scheme 1

demonstrated for the $\mathrm{Mo}(0)$-catalyzed reaction ${ }^{9,10}$ (in contrast to the stoichiometric procedure). On the other hand, allylic substitution catalyzed by strong Lewis acids proceeds via uncoordinated allylic cations, which results in stereochemical scrambling.

The Pd(0)-catalyzed allylic substitution has mainly been developed to construct $\mathrm{C}-\mathrm{C}$ bonds, ${ }^{1-3,5-7}$ although formation of $\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{O}$, and $\mathrm{C}-\mathrm{N}$ bonds has also been reported. ${ }^{1,2 \mathrm{2q-i}, 5 b}$ Recently, Sinou ${ }^{11}$ has shown that phenols and naphthols can be used as O-nucleophiles to obtain arylallyl ethers, such as 5, provided carbonates (4), rather than acetates, areemployed as allylic substrates (Scheme 2). At higher temperature, the primarily formed β-naphthoxy derivative 5 undergoes a rearrangement to afford the thermodynamic product $\mathbf{6},{ }^{11}$ so that the reaction can, a priori, be employed either as a $\mathrm{C}-\mathrm{O}$ or $\mathrm{C}-\mathrm{C}$ bondforming process.

In the adjacent paper, ${ }^{12}$ we have detailed the preparation of molybdenum(II) complexes A-C (Scheme 3) and their tungsten(II) congeners and demonstrated their utilization as Lewis-acidic catalysts in allylic substitution. ${ }^{13-16}$ Complexes $\mathbf{A}-\mathbf{C}$ proved to catalyze both $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ bond formation. Thus, allylic acetate 7 reacted with

[^1]Scheme 2

Scheme 3

B
$\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3} \xrightarrow{\mathrm{SnCl}_{4}} \mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{MeCN}_{2}\left(\mathrm{SnCl}_{3}\right) \mathrm{Cl}\right.$ C

$\mathrm{MeOH}{ }^{12,13}$ in the presence of either of the complexes $\mathbf{A}-\mathbf{C}$ (2-5 mol \%) at room temperature to give the corresponding methoxy-derivative 9 (Scheme 4). By contrast, cinnamyl acetate $\mathbf{8}$ proved inert, suggesting that only those allylic substrates that are capable of a fair degree of stabilization of the allylic cation can be successfully employed. The $\mathrm{C}-\mathrm{C}$ bond formation with silyl enol ethers as nucleophiles (e.g., 10) occurred under very mild conditions even more readily (Scheme 4). ${ }^{12,13}$ Although this particular reaction was not regioselective, producing a $\sim 1: 1$ mixture of $\mathbf{1 1}$ and $\mathbf{1 2}$, we have described a number of highly regioselective examples. ${ }^{12}$

Results and Discussion

The electron-rich double bond in enol ethers, such as 13 (Chart 1), proved sufficiently nucleophilic to effect

[^2]
Chart 1

allylic substitution in the presence of $\mathrm{Mo}(\mathrm{II})$ catalysts $\mathbf{A}-\mathbf{C} .{ }^{12}$ It is, therefore, tempting to raise the question of whether aromatics, such as anisole (14; $\mathrm{R}=\mathrm{Me}$), can be regarded as alkyl vinyl ethers and would react with an allylic substrate. F urthermore, would phenol (14; R = H) serve as a nucleophilic enol? If successful, what would be the regioselectivity regarding both the allylic substrate and the aromatic ring, and what chemoselectivity can be expected for phenol in view of the Sinou work (Scheme 2): ${ }^{11} \mathrm{O}$ - or $\mathrm{C}-\mathrm{allyl}$ ation? Finally, if $\mathrm{C}-\mathrm{C}$ bond formation is attained, would this be an example of direct, Friedel-Crafts-type aromatic substitution or a two-step process as that in the Scheme 2? N ote that in classical Friedel Crafts reactions ${ }^{17,18}$ and related processes, the Lewisacidic catalyst has to be used, as a rule, in stoichiometric amounts owing to its trapping by coordination to the product, which makes it unavailable for another catalytic cycle. Hence, effective dissociation of the catalyst from the product is crucial, and attempts at developing a new system should focus on this step.
To address these issues, we have empl oyed a series of allylic substrates (Chart 2) and a set of representative, electron-rich aromatic and heteroaromatic compounds

[^3]
Chart 3

26, $R=M e$
28, $R=M e, X=M e$
31
27, $R=H$
29, $R=H, X=M e$
30, $R=H, X=O M e$

Scheme 5

(Chart 3). Since the initial experiments with complex \mathbf{A} turned out to give poor conversions, ${ }^{13 c}$ we have focused on complexes B and C.

General Reactivity. At the outset, we have utilized the readily available allylic acetate 7, which previously proved fairly reactive toward a range of silyl enol ethers; ${ }^{12}$ anisole $\mathbf{2 6}$ and phenol $\mathbf{2 7}$ were selected as nucleophilic probes (Scheme 5).

In the presence of dibromo complex B ($5 \mathrm{~mol} \%$), 7 turned out to react with anisole at room temperature, affording 37 as the sole product in 91% isolated yield (Table 1, entry 1). ${ }^{19}$ N ote that 37 was formed with high selectivity by connecting the p-position of the aromatic ring to the methyl terminus of the allylic system. ${ }^{20}$ Phenol proved slightly less selective, giving a $\sim 7: 1$ mixture of p- and o-products 38 and 41 (Table 1, entry 2). Allylation with cinnamyl acetate 8 followed the same pattern: anisole furnished solely the p-isomer 39 (Table 1, entry 10), whereas phenol gave a $\sim 5: 1$ mixture of p - and o-products 40 and 42 (Table 1, entry 11). In both cases, only attack at the less substituted terminus of the allylic moiety was observed and the trans-configuration of the double bond was preserved.

The unusually high p-selectivity, observed both with anisole and phenol, raised the question of what would be the result of blocking the p-position. To address this issue, we have empl oyed p-substituted aromatics 28-30 (Scheme6). With 7, both p-methylanisole 28 and p-cresol 29 turned out to produce the corresponding o-isomers 43

[^4]Table 1. Allylation of Aromatics with 7 and 8 Catalyzed by Complex $\mathbf{B a}^{\mathbf{a}}$

entry	allylic compd	aromatic compd	time	product(s)	product ratio ${ }^{\text {b }}$	yield (\%) ${ }^{\text {c }}$
1	7	Ph-OMe	1 h	37		91
2	7	Ph-OH	30 min	$38+41$	88:12	94
3	7	28	4 h	$43^{\text {d }}$	d	61
4	7	29	1 h	44		56
5	7	30	30 min	$45+48$	34:66	61
6	7	33	30 min	$54+56$	84:16	90
7	7	35	2 h	$58+60$	80:20	52
8	7	36	4 h	$59+61$	85:15	86
9	(R)-7	Ph-OMe	1 h	(\pm)-37		90
10	8	Ph-OMe	4 h	39		68
11	8	$\mathrm{Ph}-\mathrm{OH}$	1 h	$40+42$	83:17	71
12	8	28	$6 \mathrm{~h}^{\text {e }}$	46		30^{f}
13	8	30	3 h	$47+49$	81:19	78
14	8	31	6 h	$50+51$	79:21	70
15	8	32	6 h	$52+53$	77:23	57
16	8	33	5 h	$55+57$	75:25	44

a The reactions were carried out on 0.5 mmol scale in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with $5 \mathrm{~mol} \%$ of the catalyst at room temperature under inert atmosphere unless stated otherwise. ${ }^{\text {b }}$ The product ratios were determined by ${ }^{1} \mathrm{H}$ NMR spectra of the crude mixtures. ${ }^{\mathrm{C}}$ I solated yield. ${ }^{d}$ Contained $\sim 2 \%$ of a bis-allylated byproduct. ${ }^{\text {e }} 2 \mathrm{~mol} \%$ of the catalyst. ${ }^{\mathrm{f}}$ Traces of a mixture of bis-allylated products were also detected.

and 44, respectively (Table 1, entries 3 and 4). ${ }^{20}$ In the case of the doubly activated nucleophile 30, preferential formation of the isomer 45 (corresponding to o-substitution with respect to the hydroxy group) was observed. However, in this instance, bis-allylated derivative 48 was isolated as the major product (Table 1, entry 5), ${ }^{21}$ reflecting the enhanced reactivity of the aromatic ring. F ormation of the latter derivative could be partially (but not entirely) suppressed by using an excess of $\mathbf{3 0}$ (typically 5 equiv). Cinnamyl acetate 8 exhibited similar reactivity toward both 28 and 30, affording 46 and 47, respectively, contaminated with the bis-allylated byproduct 49 in the latter case (Table 1, entries 12 and 13). ${ }^{20}$

The bis-allylation complicates the reaction of a highly activated aromatic ring (i.e., one with two oxygen groups attached) if a highly reactive allylic partner is utilized

[^5]Scheme 7
$8+$

8

52, $R=H$
53, $\mathrm{R}=\mathrm{PhCH}=\mathrm{CHCH}_{2}$
(Table 1, entry 5). Thus, 1,2-(methylenedioxy)benzene (31) was found to mainly afford an inseparable diastereoisomeric mixture of bis-allylated products on reaction with 7. By contrast, employing the less reactive cinnamyl acetate 8 (Scheme 7) resulted in a substantial reduction of the rate of the second allylation so that $\mathbf{5 0}$ could be isolated as the major product, whereas 51 was formed only in a minute amount (Table 1, entry 14). Note that, in this formation of $\mathbf{5 0}$ and $\mathbf{5 1}$, each allyl group was introduced into the p-position with respect to one of the oxygen atoms of the aromatic ring in 31. ${ }^{20}$ Similarly, a ~3:1 mixture of mono- and bis-allylated products 52 and 53 was obtained on reaction of 8 with 3-methylveratrole (32) (Table 1, entry 15); again, in 53, allyl groups are located para to each of the MeO groups. ${ }^{20}$

As shown above, electron-rich aromatics proved to be excellent reaction partners. By contrast, aromatics with an adjacent electron-withdrawing group, such as $\mathrm{Ph}-$ $\mathrm{Cl}, \mathrm{Ph}-\mathrm{COMe}, \mathrm{Ph}-\mathrm{NO}_{2}$, and m -chlorophenol were inert, which is consistent with the assumed nucleophilic role of the aromatic ring in these reactions. A methyl group alone on the ring is apparently too weak to promote the reaction, for toluene also proved inert (at room temperature). Surprisingly, no reaction was observed with $\mathrm{Ph}-$ $\mathrm{OAc}, \mathrm{Ph}-\mathrm{NHCOMe}$, and $\mathrm{Ph}-\mathrm{NMe}_{2}$ although these substituents are normally regarded as activating the aromatic ring. This lack of reactivity can be attributed to inactivation of the catalyst by preferential coordination of the metal to the Lewis-basic functional group (carbonyl or nitrogen, respectively). The latter coordination is evidenced by IR spectroscopy: thus, for instance, adding an equimolar amount of \mathbf{B} to a solution of $\mathbf{8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ caused a shift of $\nu(\mathrm{C}=0)$ by $25 \mathrm{~cm}^{-1}$ (from 1740 to $1715 \mathrm{~cm}^{-1}$). Similarly, a shift by $10 \mathrm{~cm}^{-1}$ was observed for benzaldehyde (from 1700 to $1690 \mathrm{~cm}^{-1}$). Furthermore, in both instances, the relative intensities in the $v(\mathrm{C} \equiv \mathrm{O})$ region of the complex have also changed: of the three maxima at 1960 (vs), 2040 (s), and 2100 (w) cm^{-1}, the latter was moderately increased, indicating a change in the symmetry of the coordination sphere of the metal. With acetamide as a model for amidic group, formation of a precipitate was observed within 5 min after adding complex B, demonstrating a strong coordination. This behavior clearly shows that while coordination to the acetate leaving group is essential for the allylic substitution to occur, the presence of another competing Lewisbasic group in the molecule of one of the reaction partners can engage the catalyst and prevent the reaction.

In view of the high reactivity of the electron-rich aromatics, it was desirable to explore the potential application of this method in heteroaromatic chemistry. To this end, furan and indole derivatives 33-36 were

Scheme 8

Scheme 9

73, $R^{1}=M e, R^{2}=H, R^{3}=H$ 74, $R^{1}=M e, R^{2}=H, R^{3}=M e$ 75, $R^{1}=\mathrm{Me}, R^{2}=\mathrm{Me}, R^{3}=H$ 76, $R^{1}=M e, R^{2}=M e, R^{3}=M e$

66, $R^{1}=\mathrm{Me}, R^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{H}, X=\mathrm{OH}$
67, $R^{1}=M e, R^{2}=H, R^{3}=M e, X=O H$
68, $R^{1}=M e, R^{2}=M e, R^{3}=H, X=O H$
69, $R^{1}=\mathrm{Me}, R^{2}=\mathrm{Me}, R^{3}=\mathrm{Me}, X=\mathrm{OH}$
70, $R^{1}=H, R^{2}=H, R^{3}=H, X=O M e$
71, $R^{1}=H, R^{2}=H, R^{3}=H, X=O H$
72, $R^{1}=H, R^{2}=H, R^{3}=M e, X=O H$
employed as representative model compounds (Scheme 8). 2-M ethylfuran (33) was found to readily react with 7, producing mainly 54 as the result of connecting the most reactive 5 -position ${ }^{20}$ of the furan ring with the methyl terminus of the allyl moiety (Table 1, entry 6); 8 gave a mixture of 55 and 57 (Table 1, entry 16). In the case of indole 35 and its N -methyl derivative 36, the electrophilic attack occurred exclusively at the expected 3-position ${ }^{20}$ (Table 1, entries 7and 8). Again, the reaction exhibited high preference for the methyl terminus of the allylic moiety, affording 58 and 59, respectively, in preference to their regioisomers $\mathbf{6 0}$ and $\mathbf{6 1} .{ }^{22}$ By contrast, benzothiazole proved inert (presumably owing to deactivation of the catalyst by coordination), whereas pyrrole produced an intractable mixture. Carbazole, whose "indole β-position" is blocked by the annulated ring, was also inert.

To establish the scope of this novel catalysis in aromatic electrophilic substitution, we have examined the reactivity of additional allylic acetates, namely 15-22 (Chart 2), toward our set of electron-rich aromatics (Chart 3).

The reaction of $\mathbf{1 5}$ with anisole, carried out in the presence of complex \mathbf{B}, produced the expected p-isomer 62 (Scheme 9) at room temperature in 30 min (Table 2, entries 1 and 2). The less reactive cyclohexenyl acetate
(22) In contrast to the ready reaction of both 35 and $\mathbf{3 6}$ with 7, practically no reaction with 8 was detected.

Table 2. Catalytic Allylation of Aromatics with 15-25a

entry	allylic compd	aromatic compd	catalyst	time	product(s)	product ratio ${ }^{\text {b }}$	yield (\%) ${ }^{\text {c }}$
1	15	$\mathrm{Ph}-\mathrm{OMe}$	B	30 min	62		42
2	15	$\mathrm{Ph}-\mathrm{OMe}$	B	$3 \mathrm{~h}^{\text {d }}$	62		50
3	15	$\mathrm{Ph}-\mathrm{OH}$	B	20 min	$63+73$	36:64	59
4	15	$\mathrm{Ph}-\mathrm{OH}$	C	20 min	$63+66+73$	11:43:46	44
5	15	29	B	30 min	74		77
6	15	34	B	30 min	87		65
7	15	36	B	30 min	88		85
8	16	$\mathrm{Ph}-\mathrm{OH}$	B	30 min	$64+75$	36:64	$22^{\text {e }}$
9	16	29	B	30 min	76		80
10	16	36	B	30 min	89		70
11	17	Ph-OMe	B	2 h	65-70	57:43	56
12	17	$\mathrm{Ph}-\mathrm{OMe}$	C	1.5 h	$65+70$	54:46	73
13	17	$\mathrm{Ph}-\mathrm{OH}$	B	30 min	$71{ }^{\text {f }}$	90:109	79
14	17	$\mathrm{Ph}-\mathrm{OH}$	C	30 min	$71{ }^{\text {f }}$	95:59	83
15	17	29	C	2 h	$72^{\text {f }}$	84:169	91
16	19	$\mathrm{Ph}-\mathrm{OMe}$	B	2 h	$77{ }^{\text {f }}$	80:209	50
17	19	$\mathrm{Ph}-\mathrm{OH}$	B	20 min	78	87:139	$41^{\text {e }}$
18	19	31	B	2 h	79		47
19	19	32	B	2 h	80		74
20	20	$\mathrm{Ph}-\mathrm{OMe}$	B	2 h	$81{ }^{\text {f }}$		$24{ }^{\text {e }}$
21	20	$\mathrm{Ph}-\mathrm{OH}$	B	2 h	$85^{\text {f }}$ h	95:59	$19{ }^{\text {e }}$
22	21	$\mathrm{Ph}-\mathrm{OMe}$	B	1 h	82	73:27j	42
23	21	$\mathrm{Ph}-\mathrm{OH}$	B	1 h	86	90:10	$27{ }^{\text {e }}$
24	22	$\mathrm{Ph}-\mathrm{OMe}$	B	1.5 h	82	> 95:5j	47
25	22	$\mathrm{Ph}-\mathrm{OH}$	B	2 h	86^{f}	80:20	48
26	23	$\mathrm{Ph}-\mathrm{OH}$	B	4 h	$90+91^{k}$	90:10	59
27	23	$\mathrm{Ph}-\mathrm{OH}$	C	4 h	$90+91$	90:10	50
28	24	$\mathrm{Ph}-\mathrm{OMe}$	B	1 h	$93{ }^{\text {m }}$		75
29	24	$\mathrm{Ph}-\mathrm{OH}$	B	30 min	$92^{\text {m }}$		51
30	25	$\mathrm{Ph}-\mathrm{OMe}$	B	6 h	93		72

${ }^{\text {a }}$ The reactions were carried out on 0.5 mmol scale in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with $5 \mathrm{~mol} \%$ of the catalyst at room temperature under inert atmosphere unless stated otherwise. ${ }^{\mathrm{b}}$ The product ratios were determined by ${ }^{1} \mathrm{H}$ NMR spectra of the crude mixtures. ${ }^{\mathrm{C}}$ Isolated yield. ${ }^{d} \mathrm{At}-10^{\circ} \mathrm{C}$. ${ }^{\mathrm{e}}$ The low yield is mainly due to the competing elimination. ${ }^{\mathrm{f}}$ Contained bis-allylated byproduct(s). ${ }^{9}$ The mono-/bis-allylation ratio. ${ }^{\text {h }}$ The intermediate acyclic product was detected by TLC but not isolated; the reaction was quenched after the cyclization had been completed. ${ }^{i}$ Contained ortho-isomer as byproduct. ${ }^{j}$ The para/ortho ratio. ${ }^{k}$ Contained the corresponding cis-isomers as byproducts, which were not fully characterized; the trans/cis ratio was 81:19 for $\mathbf{9 0}$ and $75: 25$ for $\mathbf{9 1}$. ${ }^{1}$ The trans/cis ratio for $\mathbf{9 0}$ was $75: 25$. m A 10 -fold excess of the aromatic nucleophile was used in order to suppress the bis-allylation.

17 afforded a $\sim 3: 2$ mixture of p - and o-isomers 65 and 70 (Table 2, entry 11); bimetallic catalyst C showed the same behavior (Table 2, entry 12).
In contrast to anisole, phenol exhibited enhanced proportion of the o-product on reaction with 15, giving rise to a mixture of the p-and o-allylated phenols 63 and 66 and the bridged heterocycle 73 (Table 2, entries 3 and 4); the latter cyclic ether apparently originates from a ring closure reaction of the intermediate o-substituted phenol 66. With the p-position blocked, as in p-cresol 29, the initially generated o-substituted product 67 (not isolated) was cyclized to 74 in good yield (Table 2, entry 5). Isophoryl acetate 16 reacted in an anal ogous way with both phenol $\mathbf{2 7}$ and p-cresol 29, affording a mixture of p-allylated phenol 64 and the ring-closed heterocycle 75, in the former case (Table 2, entry 8) and cylic ether 76 as the sole product, in the latter (Table 2, entry 9); the ring-opened intermediates 68 and 69 , respectively, could not be isolated. On the other hand, the reaction of cyclohexenyl acetate $\mathbf{1 7}$ with either phenol $\mathbf{2 7}$ or p-cresol 29 stopped at the stage of the o-substituted product 71 or 72, respectively (Table 2, entries 13-15), accompanied by a small amount of bis-allylated byproducts, as revealed by GCMS.

Of the five-membered ring allylic substrates 18 and 19, the former gave almost exclusively elimination products, whereas the latter followed the pattern of its cyclohexene-derived counterparts (Scheme 10). Thus, reaction of $\mathbf{1 9}$ with anisole afforded mainly p-substituted product 77 (Table 2, entry 16), while reaction with phenol gave rise to o-substituted product 78 (Table 2, entry 17);

in both cases, small amounts of bis-allylated byproducts were detected. However, the isolated yields were lower than those in the cyclohexene series, owing to the larger proportion of competing elimination of the allylic substrate. The doubly activated aromatics $\mathbf{3 1}$ and $\mathbf{3 2}$ gave acceptable yields of the corresponding substitution products 79 and 80, respectively (Table 2, entries 18 and 19).
The aliphatic allylic acetate $\mathbf{2 0}$ (Scheme 11) turned out to be less efficient than the other members of the series (7-19), mainly due to preferential elimination. Nevertheless, the reaction with anisole furnished the p -sub-

Scheme 11

Scheme 12

87
88, $R=H$
89, $R=M e$
stitution product 81 in 24% yield (Table 2, entry 20). With phenol, an initial formation of $\mathbf{8 3}$ was observed by TLC, followed by cyclization to produce the benzopyran derivative 85 (Table 2, entry 21). Prenyl acetate 21 exhibited similar behavior, giving 82 with anisole (Table 2, entry 22), whereas the cyclic product 86 resulted from the reaction with phenol (Table 2, entry 23); the ring-opened intermediate 84 could not be isolated. Notably higher yields were obtained when the allylic isomer 22 was utilized as electrophile (Table 2, entries 24 and 25).

The reaction of 15 with the furan derivative 34 proceeded readily, furnishing the expected substitution product 87 in high yield (Scheme 12; Table 2, entry 6), and so did the reactions of $\mathbf{1 5}$ and $\mathbf{1 6}$ with N -methylindole (36), which afforded the β-substituted indole derivatives 88 and 89, respectively (Table 2, entries 7 and 10).

Stereochemistry. To establish the stereochemistry of the allylation process with respect to the allylic electrophile, we first investigated the reactivity of allylic acetate 23 (Scheme 13). Its reaction with phenol catalyzed by complex B proceeded readily at ambient temperature, giving a 90:10 mixture of o- and p-isomers 90 and 91 (Table 2, entry 26), separated by semipreparative HPLC. ${ }^{1} \mathrm{H}$ NMR spectroscopy revealed that the products were contaminated by the corresponding cis-isomers (the trans/ cis ratios were 81:19 for 90 and 75:25 for 91), which could not be separated. The same reaction catalyzed by complex C also afforded a 90:10 mixture of 90 and 91 (Table 2, entry 27), in which the content of the cis-isomer was similar to the later case (75:25). In contrast to this ready reaction, the cis-epimer of $\mathbf{2 3}$ reacted sluggishly, giving mainly elimination products. Apparently, the pseudoaxial disposition of the leaving group in the trans-epimer 23,

Scheme 13

$(R)-(+)-7$
$(\pm)-37$
allowing an overlap of π and σ^{*} orbitals in the transition state at low energy cost, is the prerequisite for the reaction to occur readily.

The epimeric pair of bicyclic allylic acetates 24 and 25, first introduced by Fiaud, ${ }^{23}$ has previously been employed to establish the steric course of $\mathrm{Pd}(0)$ - and $\mathrm{Mo}(0)$ catalyzed allylic substitution. ${ }^{5 a, 9,23}$ The advantage of this system is the steric bias, which renders the endo-face inaccessible by both the catalyst and the nucleophile. ${ }^{5, b, b, 9,23}$ In agreement with the previously observed reactivity toward $\mathrm{Mo}(0)^{9}$ and $\mathrm{Mo}(\mathrm{II}),{ }^{12}$ exo-acetate 24 turned out to react readily with either phenol or anisole, affording the respective exo-products 92 and 93 (Table 2, entries 28 and 29). Note, again, the selective ortho-substitution for phenol (92) and the para-attachment for anisole (93). The endo-epimer 25 also furnished 93 on reaction with anisole (Table 2, entry 30), although in a somewhat slower process (6 h vs 1 h ; compare entries 28 and 30), which is in agreement with the previously observed reactivity toward silyl enol ethers. ${ }^{12}$

The reaction of the enantiomerically pure allylic acetate (R)-(+)-7 $7^{5 b}$ with anisole produced racemic 37 in excellent yield (Table 1, entry 9), demonstrating the nonstereospecific nature of these Mo (II)-catalyzed allyIation reactions; the role of Mo (II) catalyst can thus be defined as that of a very selective Lewis acid, which is in line with our previous observations. ${ }^{12}$

Mechanistic Considerations. The $\mathrm{Pd}(0)$-catalyzed reaction of ethyl cinnamyl carbonate 4 with β-naphthol (Scheme 2) has been shown by Sinou ${ }^{11}$ to give first the O-allylated kinetic product 5, which is rearranged at higher temperature to the thermodynamic C-alkylated product 6. Although the latter rearrangement could be conjectured as occurring via Claisen rearrangement (Scheme 14), Sinou has demonstrated that this is not the

[^6]
Scheme 14

96
Scheme 15

(R)-99
(S)-100
case, since the Claisen rearrangement should give 96 rather than 6. According to his interpretation, ArO serves as a leaving group in the presence of Pd(0), which allows for generation of the corresponding π-allyl complex 95 together with naphthoxide (94), whose recombination eventually leads to 6. Interestingly, this reactivity appears to be confined to naphthoxy derivatives; the corresponding phenoxy systems were inert under the same conditions.

Recently, Trost has also examined the rearrangements of arylallyl ethers, such as (R)-99, obtained on the reaction of racemic allylic carbonate 97 with phenol 98, catalyzed by a chiral Pd(0) complex (Scheme 15). Whereas Pd catalysts proved ineffective in his systems, he found that (R)-99 underwent Claisen rearrangement by the action of $\mathrm{Eu}(\mathrm{fod})_{3}$ at $50^{\circ} \mathrm{C}$; formation of (S)-100 as the main product is compatible with the involvement of a chairlike transition state. ${ }^{24}$

In light of these reports, it was of interest to el ucidate the mechanism of our Mo (II)-catalyzed $\mathrm{C}-\mathrm{C}$ bond-forming reactions. Although we were unable to intercept the O-allylation product, its formation as a short-lived intermediate could not be a priori excluded. Furthermore, the Mo (II)-catalyzed reaction with MeOH as a prototype O-nucleophile ($\mathbf{7}+\mathrm{MeOH} \rightarrow \mathbf{9}$; Scheme 4) has been shown by us to occur with complete racemization. ${ }^{12}$ Hence, if the O-allylated species were the intermediate, racemization would occur in the first step, leaving the question of the stereochemistry of the putative rearrangement to the C -allylated product open. To address these issues, an enantiopure O-allyl derivative of known configuration was required. Sinou has demonstrated an

[^7]overall retention (via inv-inv mechanism) for O-allylation, using the cis-epimer of 23. ${ }^{11,25}$ With this stereochemistry in mind, we have reacted allylic carbonate (R)-(+)-101 (synthesized from the corresponding al cohol of 95% ee ${ }^{5 \mathrm{~b}}$) with phenol to obtain (R)-(+)-102 (75\%). ${ }^{26,27}$ Similarly, the $\mathrm{Pd}(0)$-catal yzed reaction of $(\mathrm{R})-(+)-101$ with β-naphthol afforded the naphthoxy derivative (R)-(+)-104 (86\%). ${ }^{26}$ Whereas the O-allylated derivatives (+)-102 and (+)-104 proved inert to Pd catalysts, their rearrangement to the respective C-allylated products $\mathbf{3 8 / 4 1}$ (1:1) and 105 was accomplished on treatment with a catalytic amount of complex B (room temperature, 20 or 8 h). However, the latter transformations turned out to be much slower than the direct $\mathrm{C}-\mathrm{C}$ bond-forming allylation (note that 30 min is required for the reaction of 7 with PhOH : Table 1, entry 2), and the respective products $\mathbf{3 8 / 4 1}$ and $\mathbf{1 0 5}$ proved to be racemic. Moreover, free phenol and β-naphthol ($\sim 5 \%$), respectively, were detected in the crude reaction mixtures by GCMS. Similar results were obtained with other Lewis acids, such as $(\mathrm{TfO})_{3} \mathrm{Yb}$ (rt, overnight). An entirely different picture was obtained when Eu(fod) 3_{3} was employed as the Lewis acid. In consonance with Trost's findings, the product of Claisen rearrangement $103\left(80^{\circ} \mathrm{C}, 12 \mathrm{~h}\right.$ in dichloroethane; $\sim 75 \%$ conversion $)^{28}$ was formed and proved to be of 76\% ee as revealed by HPLC on Chiralcel OD-H column. The naphthyl derivative 104 reacted similarly with $\mathrm{Eu}(\mathrm{fod})_{3}$ to afford the corresponding product of Claisen rearrangement $106\left(80^{\circ} \mathrm{C}\right.$, 12 h in dichloroethane; > 95\% conversion; 82\% ee). E ach of 103 and 106 was obtained as a $\sim 4: 1$ mixture of trans/ cis-isomers.

In another experiment (Scheme 17), cyclohexenyl phenyl ether 107, synthesized from cyclohex-1-en-2-ol and phenol via the Mitsunobu reaction (DEAD, $\mathrm{Ph}_{3} \mathrm{P} ; 77 \%$), ${ }^{29}$ was converted into the C-alkylated ortho-product 71 (36\%) and its p-isomer (10\%) on treatment with B (5 mol $\%$); unreacted 107 (15\%), free phenol ($\sim 5 \%$), and some elimination products were also detected in the crude reaction mixture. Again, the reaction was much slower than the direct allylation of phenol with cyclohexenyl acetate 17 (20 h vs 30 min), lending more credence to the above finding that the $\mathrm{Mo}(\mathrm{II})$-catalyzed transformation of the allyl ether into the C-allylated product is an interrather than intramolecular process.

The above results rule out the involvement of Claisen rearrangement in the $\mathrm{Mo}(\mathrm{II})$-catalyzed allylation of free phenols and demonstrate that, although some of the final product may arise from the initially generated O-ally-

[^8]Scheme 16

$(R)-(+)-103$

β-naphthol
$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$
dppb, THF

$(\pm)-105$
(R)-(+)-104

$(R)-(+)-106$

Scheme 17

lated intermediate, this is not the main reaction channel for the catalytic C-allylation. The stereospecific Claisen rearrangement of O-allyl derivatives, reported by Trost, ${ }^{24}$ appears to be unique to Eu(III); other Lewis-acid catalysts, such as $\mathrm{Mo}(\mathrm{II})$ or $\mathrm{Yb}(\mathrm{III})$, drive the reaction toward dissociation followed by recombination.

Ortho-/Para-Selectivity. The stereochemical investigation pointed to the $\mathrm{Mo}(\mathrm{II})$-initiated ionization of the allylic acetate to generate the corresponding allylic cation, which then attacks the electron-rich aromatic ring. This scenario should lead to the classical distribution of ortho- and para-isomers. However, anisole exhibited almost exclusive preferencefor the para-substitution in most reactions (Table 1, entries 1, 9, and 10; Table 2, entries $1,2,16,20,22,24,28$, and 30) except in one case (Table 2, entries 11 and 12). Phenol, on the other hand, exhibited high preference for the formation of orthoisomers, especially with cyclic allylic acetates (Table 2, entries $3,4,8,13,14,17,21,23,25,26$, and 29), whereas para-substitution was favored in the case of the cinnamyl system (Table 1, entries 2 and 11). Since steric effects alone, i.e., OCH_{3} vs OH , can hardly be taken responsible for such a dramatic change of regi oselectivity, there must be other factors operating in these reactions. Note that the metal is apparently not involved in coordination of the allylic cation via an η^{3}-complex as evidenced by scrambling of the original stereochemical information (vide supra). Moreover, phenol, a potentially bidentate nucleophile, has been shown to also react by direct C-al-

Figure 1. Orbital interactions between the allylic cations derived from $\mathbf{1 5}(\mathrm{R}=\mathrm{Me})$ or $\mathbf{1 7}(\mathrm{R}=\mathrm{H})$ with $\mathbf{2 6}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ or $27\left(R^{\prime}=H\right)$.
kylation rather than via the O-allylated intermediate, so that the difference between the regioselectivity of anisole vs phenol must, indeed, originate from another effect.

To shed light on the differences in regioselectivity of the reactions of allylic substrates, such as $\mathbf{1 5}$, with PhOMe (26) vs PhOH (27), let us consider the HOMOLUM O interactions (Figure 1). In the reaction of PhOH with 15, the HOMO of PhOH should interact with the LUMO of the allylic cation derived from $15(R=M e)$. For bond formation between the ortho-carbon of PhOH ($R^{\prime}=H$) and the less substituted terminus (1) of the latter cation (I), an additional stabilizing interaction can be identified between the orbital located on the oxygen atom of PhOH and the 3 -position of the cation. The formation of the para-isomer can either occur without the secondary interactions (III) or, perhaps, via II, in which the bondforming interaction between the p-carbon of PhOH and the less substituted carbon of the cation (C-1) is supplemented by the stabilizing interaction of the ortho-orbital of PhOH with the orbital in the 3-position of the cation. Since the negative charge in PhOH is mainly residing on the oxygen, the $\mathrm{O}-\mathrm{C}$ interaction in I should be more significant than the $\mathrm{C}-\mathrm{C}$ interaction in II, which is in agreement with the preferential formation of the orthoisomer. Note that considering purely Coulombic interactions would lead to the same conclusions. A dramatically different scenario is encountered in the reaction of $\mathbf{1 5}$ with PhOMe, where severe eclipsed interaction between the two methyls would render the transition state I (R $=\mathrm{R}^{\prime}=\mathrm{Me}$) much higher in energy, so that an alternative (II or III) becomes favored. The reactivity of $\mathbf{1 7}$ lends further credence to this model: in this instance, the repulsive interaction in the transition state I is absent ($\mathrm{R}=\mathrm{H}$), allowing the formation of the ortho-substituted product, which is in perfect agreement with the experiment that gives a $\sim 3: 2$ p/o-ratio (Table 2, entries 11 and 12).

A similar analysis can be applied to the reaction of the cinnamyl electrophile 8 with the same pair of nucleophiles (Figure 2). The transition states IV and \mathbf{V} are apparently less stabilized by additional interactions than their counterparts I and II, since the charge in the benzylic position (3) is further del ocalized to the aromatic ring of the cinnamyl unit. Moreover, a steric clash between $\mathrm{OH} / \mathrm{OMe}$ and the Ph group can be identified in IV. As a result, transition state VI can be regarded as more likely, which is in agreement with the experimen-

Figure 2. Orbital interactions between the allylic cations derived from 8 with $26(R=M e)$ or $27(R=H)$.

Scheme 18

tally observed shift of the preference to the p-substitution even for PhOH (Table 1, entries 1, 2, and 9-11).

Epilogue

While this work was in progress, two papers appeared reporting on the transition metal-catalyzed Friedel-Crafts-type allylation of aromatics, such as toluene, xylene, and anisole, with allylic esters, chlorides, or alcohols. ${ }^{30,31}$ However, neither $\mathrm{Mo}(\mathrm{CO})_{6}(10 \mathrm{~mol} \%)^{30}$ nor $\mathrm{Cp}{ }^{*} \mathrm{RuCl}\left(\mathrm{SPr}^{\mathrm{i}}\right)-\mathrm{Ru}\left(\mathrm{OH}_{2}\right)\left(\mathrm{SPr}^{\mathrm{i}}\right) \mathrm{Cp} *(5 \mathrm{~mol} \%),{ }^{31}$ employed as catalysts, was as selective as our $\mathrm{Mo}(\mathrm{II})$ complexes and the reaction condition were rather harsh (typically 80$140^{\circ} \mathrm{C}$ for 6-72 h).

In another recent paper, $\mathrm{Mo}(\mathrm{CO})_{6}$ has been shown to catalyze the conversion of prenyl phenyl ether (108) (110 ${ }^{\circ} \mathrm{C}$ for 55 h) into dimethylchromane (86) (65\%); interestingly, free phenol (5-10\%) was detected in the crude reaction mixture (Scheme 18). ${ }^{32}$ In light of our findings, one can envisage the following mechanism: on reaction with the catalyst, the PhO^{-}group departs with concomitant formation of π-prenyl complex 110, which then recombines with the phenoxide (109) to give the Callylated intermediate 111, whose 6(O) ${ }^{\text {n }}$-endo-Trig cyclization, ${ }^{33}$ analogous to that described in Scheme 9, affords the final chroman $\mathbf{8 6}$ by obeying the Markovnikov, rather than Baldwin, rule.

Conclusions

We have devel oped a new, extremely mild method for C-allylation of electron-rich aromatics and heteroaro-

[^9]matics, catalyzed by the readily available $\mathrm{Mo}(\mathrm{II})$ complexes $\left[\mathrm{Mo}\left(\mathrm{CO}_{4} \mathrm{Br}_{2}\right]_{2}(\mathbf{B})\right.$ or $\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{MeCN})_{2}\left(\mathrm{SnCl}_{3}\right) \mathrm{Cl}$ (C), which have not been used in catalytic chemistry before. The para-selectivity, observed with anisole (26) and its congeners, is remarkable. Since selected heteroaromatics, such as the furan and indole derivatives 34 and 36, undergo the reaction as easily as other aromatics, complexes \mathbf{B} and \mathbf{C} are likely to become a valuable addition to the menu of theF riedel-Crafts-type catalysts for allylation of aromatics. The salient features of our method are the low catalyst loading ($\leq 2 \mathrm{~mol} \%$) and the mild conditions (room temperature or lower for $30 \mathrm{~min}-2 \mathrm{~h})$. In the overall reaction outcome, the reactivity of catalysts \mathbf{B} and \mathbf{C} seems to parallel that of $\mathrm{LiCo}\left(\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}\right)_{2}$ (lithium cobalt bis(dicarbollide)) and related Li^{+}reagents. ${ }^{34}$

Experimental Section

General Methods. Melting points were determined on a K ofler block and are uncorrected. The NMR spectra were recorded in $\mathrm{CDCl}_{3},{ }^{1} \mathrm{H}$ at 250 MHz and ${ }^{13} \mathrm{C}$ at 62.9 MHz with chloroform- $\mathrm{d}_{1}\left(\delta 7.26,{ }^{1} \mathrm{H} ; \delta 77.0,{ }^{13} \mathrm{C}\right)$ as internal standard; 2D-techniques were used to establish the structures and to assign the signals. The IR spectra were recorded for a thin film between KBr plates unless otherwise stated. The mass spectra (El and/or CI) were measured on a dual sector mass spectrometer using direct inlet and the lowest temperature enabling evaporation. The GC-MS analysis was performed with RSL-150 column ($25 \mathrm{~m} \times 0.25 \mathrm{~mm}$). Chiral HPLC analyses were carried out on Chiral pak AD (Daicel) and Chiracel OD (Daicel) columns with a 10 mm guard column (silica), using UV detection at 254 nm . All reactions were performed under an atmosphere of dry, oxygen-free nitrogen in oven-dried glassware. The catalysts were prepared by literature methods: $\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{Br}_{2}\right]_{2}(\mathbf{B}) ;{ }^{12,15} \mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{MeCN})_{2}\left(\mathrm{SnCl}_{3}\right) \mathrm{Cl}(\mathbf{C}) . .^{12,16}$ Cinnamyl acetate (8) was purchased from Lancaster Synthesis Ltd. Other allylic acetates are known compounds ${ }^{35}$ and were prepared by stirring the corresponding allylic alcohols with a mixture of acetic anhydride and triethylamine and a catal ytic amount of (dimethylamino)pyridine in diethyl ether. Carbonate (R)-(+)-101 ${ }^{36}$ was prepared according to the literature procedure ${ }^{11}$ from the corresponding alcohol ${ }^{5 b}$ (95% ee). All aromatic and heteroaromatic compounds were purchased and used without further purification. Some of the products are known compounds. ${ }^{37}$ Yields are given for isolated product showing one spot on a TLC plate and no impurities detectable in the NMR spectrum.

General Procedure for Allylic Substitution Using Catalysts B or C. To a stirred solution of an allylic acetate (1 equiv) and a nucleophile (1.1-1.3 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}$) at room temperature was added $2-5 \mathrm{~mol} \%$ of the catalyst (B

[^10]or \mathbf{C}) in one portion. The mixture was stirred under nitrogen until the reaction was complete (as evidenced by TLC), then diluted with ether (20 mL), and washed successively with 5% aqueous NaHCO_{3} and water. The organic phase was dried with MgSO_{4}, and the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel ($15 \times 2 \mathrm{~cm}$) with a 9:1 hexanes-ethyl acetate mixture as an eluent.

1-Phenyl-3-(4'-methoxyphenyl)-1-butene (37). Acetate 7 ($100 \mathrm{mg}, 0.53 \mathrm{mmol}$) was reacted with anisole (26) (70 mg , 0.65 mmol) in the presence of catalyst B ($5 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) to give 37 ($114 \mathrm{mg}, 91 \%$) as a colorless oil (Table 1, entry 1): ${ }^{1} \mathrm{H}$ NMR $\delta 1.43$ (d, J $=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}$), 3.58 ($\mathrm{m}, 1$ H, 3-H), 3.76 (s, 3 H, OMe), 6.37 (m, 2 H, 1-H, 2-H), 6.85 (d, J $\left.=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.17\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\right.$ $\mathrm{H}), 7.20-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.3$ (Me), 41.7 (3CH), 55.2 (OMe), 113.8 ($\left.3^{\prime}, 5^{\prime}-\mathrm{CH}\right), 126.1,127.0,128.2,128.3$, $128.5,135.6$ (1-CH), 137.6 and 137.7 ($1^{\prime}-\mathrm{C}$ and $1^{\prime \prime}-\mathrm{C}$), 158.0 ($4^{\prime}-\mathrm{C}$); MS (EI) m/z (\%) 238 (71, M ${ }^{++}$), 223 (100).

1-Phenyl-3-(4-hydroxyphenyl)-1-butene (38) and 1-Phen-yl-3-(2'-hydroxyphenyl)-1-butene (41). Acetate 7 (100 mg , 0.53 mmol) was reacted with phenol (27) (60 mg .0 .64 mmol) in the presence of catalyst B ($5 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ to afford an 18:82 mixture of 38 and 41 ($111 \mathrm{mg}, 94 \%$) as a colorless oil (Table 1, entry 2): MS (EI) m/z (\%) 224 (73, M•+), 209 (100). 38: ${ }^{1} \mathrm{H}$ NMR δ (measured in a mixture with the ortho-isomer) 1.41 (d, J $=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}$), $3.56(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, 5.08 (br s, $1 \mathrm{H}, \mathrm{OH}$), $6.36(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}, 2-\mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=8.5$ $\left.\mathrm{Hz}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.11\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.17-$ 7.36 (m, $5 \mathrm{H}, \mathrm{Ph})$; ${ }^{13} \mathrm{C}$ NMR $\delta 21.8$ (Me), 42.1 (3-CH), 115.8 ($\left.3^{\prime}, 5^{\prime}-\mathrm{CH}\right), 126.6,127.5,128.8,129.0,130.2,136.1$ (1-CH), 138.1 and 138.3 ($1^{\prime}, 1^{\prime \prime}-\mathrm{C}$), 154.3 ($\left.4^{\prime}-\mathrm{C}\right) .411^{1} \mathrm{H}$ NMR δ (measured in a mixture with the para-isomer) 1.47 (d, J $=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}$), $3.88(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}), 5.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 6.47(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}$, 2-H), 6.87-7.4 (m, $\left.2 \mathrm{H}, 4^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$.

1-Phenyl-3-(4'-methoxyphenyl)-1-propene (39). ${ }^{37 a, b}$ Acetate 8 ($100 \mathrm{mg}, 0.57 \mathrm{mmol}$) was reacted with anisole (26) (70 $\mathrm{mg}, 0.65 \mathrm{mmol}$) in the presence of catalyst $\mathbf{B}(5 \mathrm{~mol} \%)$ in CH_{2-} $\mathrm{Cl}_{2}(5 \mathrm{~mL})$ to furnish 39 ($87 \mathrm{mg}, 68 \%$) as a col orless oil (Table 1, entry 10): ${ }^{1} \mathrm{H}$ NMR $\delta 3.46$ (d, J $=6.0 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}$), 3.76 (s , $3 \mathrm{H}, \mathrm{OMe}$), 6.31 (dt, J $=15.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 6.42(\mathrm{~d}, \mathrm{~J}=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}) 6.84\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.13$ $\left(\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.17-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}),{ }^{13} \mathrm{C}$ NMR $\delta 38.9\left(3-\mathrm{CH}_{2}\right), 55.7(\mathrm{OMe})$, $114.4\left(3^{\prime}, 5^{\prime}-\mathrm{CH}\right), 126.6,127.5$, 129.0, 130.1, 130.2, 131.2 (1-CH), 132.6 and 138.0 ($1^{\prime}-\mathrm{C}$ and $1^{\prime \prime}-\mathrm{C}$), 158.6 ($4^{\prime}-\mathrm{C}$); MS (EI) m/z (\%) 224 (100, M ${ }^{++}$).

[^11] Gonzalez-Ortega, A.; Pedrosa, R.; Vincente, M. Synthesis 1984, 238.

1-Phenyl-3-(4'-hydroxyphenyl)-1-propene (40) ${ }^{37 \mathrm{~b}, \mathrm{c}}$ and 1-Phenyl-3-(2 2 -hydroxy-phenyl)-1-propene (42). ${ }^{37 \mathrm{C}}$ Acetate 8 ($100 \mathrm{mg}, 0.57 \mathrm{mmol}$) was reacted with phenol (27) (60 mg , 0.64 mmol) in the presence of catalyst B (5 mol \%) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) to produce a 17:83 mixture of $\mathbf{4 0}$ and $\mathbf{4 2}$ ($85 \mathrm{mg}, 71 \%$) as a col orless oil (Table 1, entry 11): MS (EI) m/z (\%) 210 (100, M^{++}). 40: ${ }^{1 \mathrm{H}} \mathrm{NMR} \delta$ (measured in a mixture with the orthoisomer) 3.46 (d, J $=6.0 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.31$ (dt, J $=15.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 6.42(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}$, $1-\mathrm{H}), 6.84\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.13(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.17-7.35$ (m,5 H, Ph); ${ }^{13} \mathrm{C}$ NMR $\delta 38.9$ (3CH_{2}), 115.8 ($3^{\prime}, 5^{\prime}-\mathrm{CH}$), 126.6, 127.5, 129.0, 130.1, 130.3, 131.2 (1-CH), 132.8 and 138.0 ($1^{\prime}-\mathrm{C}$ and $\left.1^{\prime \prime}-\mathrm{C}\right), 154.3\left(4^{\prime}-\mathrm{C}\right) .42{ }^{1} \mathrm{H}$ NMR δ (measured in a mixture with the para-isomer) 3.57 (d, $\mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.38(\mathrm{dt}, \mathrm{J}=15.8$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 6.51(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=$ $\left.8.2 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 6.88\left(\mathrm{t}, \mathrm{J}=7.2,1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.11-7.37(\mathrm{~m} ; 7 \mathrm{H}$, $\left.3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right)$.

1-Phenyl-3-(2'-methoxy-5'-methylphenyl)-1-butene (43). Acetate 7 ($100 \mathrm{mg}, 0.53 \mathrm{mmol}$) was reacted with 4-methylanisole (28) ($85 \mathrm{mg}, 0.70 \mathrm{mmol}$) in the presence of catalyst B (5 $\mathrm{mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) to afford 43 ($81 \mathrm{mg}, 61 \%$) as a col orless oil (Table 1, entry 3): ${ }^{1} \mathrm{H}$ NMR $\delta 1.40$ (d, J $=6.9 \mathrm{~Hz}$, $3 \mathrm{H}, 4-\mathrm{Me}$), 2.26 (s, $3 \mathrm{H}, 5^{\prime}-\mathrm{Me}$), 3.79 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 4.06 (m, 1 $\mathrm{H}, 3-\mathrm{H}), 6.41(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}, 2-\mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.3^{\prime}-\mathrm{H}\right), 7.03\left(\mathrm{~m}, 2 \mathrm{H}, 4^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.12-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\delta 20.5$ (Me), 21.0 (Me), 35.6 (3-CH), 56.1 (OMe), 111.1 (CH), 126.5 ($\left.2^{\prime} 6^{\prime}-\mathrm{CH}\right), 127.2(\mathrm{CH}), 127.8(\mathrm{CH}), 128.5(\mathrm{CH})$, 128.7 (CH), 128.8 ($3^{\prime}, 5^{\prime}-\mathrm{CH}$), 130.2 (C), 134.3 (C), $135.5(\mathrm{CH})$, 138.4 (C), 158.0 ($2^{\prime \prime}-\mathrm{C}$); MS (EI) m/z (\%) 252 ($89, \mathrm{M}^{++}$), 237 (100).

1-Phenyl-3-(2 -hydroxy-5'-methylphenyl)-1-butene (44). Acetate 7 ($100 \mathrm{mg}, 0.53 \mathrm{mmol}$) was reacted with p-cresol (29) ($70 \mathrm{mg}, 0.65 \mathrm{mmol}$) in the presence of catalyst $\mathbf{B}(5 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ to furnish $44(70 \mathrm{mg}, 56 \%)$ as a colorless oil (Table 1, entry 4): ${ }^{1} \mathrm{H}$ NMR $\delta 1.46$ (d, J $=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{Me}$), 2.26 (s, 3 H, 5'-Me), 3.86 (qd; J $=6.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), 5.01 (s, $1 \mathrm{H}, \mathrm{OH}$) , 6.40 (dd, J $=16.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 6.49(\mathrm{~d}, \mathrm{~J}$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 6.67\left(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 6.89$ (dd, $\left.\mathrm{J}=8.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 6.98\left(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right)$, 7.15-7.37 (m, 5 H, Ph); MS (EI) m/z (\%) 238 (85, M•+), 91 (100).

1-Phenyl-3-(2-hydroxy-5'-methoxyphenyl)-1-butene (45) and 2,5-Bis(1'-phenyl-1'-buten-3'-yl)-4-methoxyphenol (48). Acetate $7(100 \mathrm{mg}, 0.53 \mathrm{mmol})$ was reacted with 4 -methoxyphenol (30) ($90 \mathrm{mg}, 0.72 \mathrm{mmol}$) in the presence of catalyst \mathbf{B} ($5 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}$) to give a $34: 66$ mixture of 45 and 48 ($81 \mathrm{mg}, 61 \%$) as a colorless oil (Table 1, entry 5). The two compounds were separated by column chromatography on silica ($20 \times 2.5 \mathrm{~cm}$) with a hexanes-ethyl acetate mixture (9: 1) as an eluent. The slower moving component was identified as 45: ${ }^{1} \mathrm{H}$ NMR $\delta 1.47$ ($\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{Me}$), 3.76 ($\mathrm{s}, 3 \mathrm{H}$, OMe), 3.87 (m, $1 \mathrm{H}, 3-\mathrm{H}$), 4.84 (s, $1 \mathrm{H}, \mathrm{OH}$), 6.39 (dd, J = 16.0, $5.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), 6.49 (d, J $=16.3 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 6.66$ (dd, J $\left.=8.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 6.74\left(\mathrm{~d}\right.$; J $\left.=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 6.78$ (d, J $\left.=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.15-7.37(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ; \mathrm{MS}$ (EI) $\mathrm{m} / \mathrm{z}(\%) 254$ (58, M^{++}), 150 (100). The faster moving component was identified as 48: ${ }^{1} \mathrm{H}$ NMR (recorded for a $\sim 1: 1$ mixture of diastereoi somers) $\delta 1.38$ and $1.47(2 \times \mathrm{d}, \mathrm{J}=7.2$ and 6.9 Hz , respectively, $2 \times 3 \mathrm{H}, 4^{\prime}-\mathrm{Me}$ and $\left.4^{\prime \prime}-\mathrm{Me}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, 3.86 and $4.02\left(2 \times \mathrm{m}, 2 \times 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right.$ and $\left.3^{\prime \prime}-\mathrm{H}\right), 4.81(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}), 6.36-6.54\left(\mathrm{~m}, 4 \mathrm{H}, 1^{\prime}-\mathrm{H}, 1^{\prime \prime}-\mathrm{H}, 2^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 6.61$ and 6.71 $(2 \times \mathrm{s}, 2 \times 1 \mathrm{H}, 3-\mathrm{H}$ and $6-\mathrm{H}), 7.16-7.37(\mathrm{~m}, 10 \mathrm{H}, 2 \times \mathrm{Ph})$; MS (EI) m/z (\%) 384 (62, M•+), 369 (100).

1-Phenyl-3-(2'-methoxy-5'-methylphenyl)-1-propene (46). ${ }^{37 \mathrm{~d}}$ Acetate 8 ($100 \mathrm{mg}, 0.57 \mathrm{mmol}$) was reacted with 4-methylanisole (28) ($85 \mathrm{mg}, 0.70 \mathrm{mmol}$) in the presence of catalyst B ($2 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ to produce $46(40 \mathrm{mg}$, 30%) as a colorless oil (Table 1, entry 12): ${ }^{1} \mathrm{H}$ NMR $\delta 2.26$ (s, $\left.3 \mathrm{H}, 5^{\prime}-\mathrm{Me}\right), 3.50(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, 6.34 (dt, J $=15.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 6.43(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}$, $1-\mathrm{H}), 6.76\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 6.98\left(\mathrm{~m}, 2 \mathrm{H}, 4^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$, $7.14-7.37$ (m, 5 H, Ph); MS (EI) m/z (\%) 238 (100, M ${ }^{+}$).
1-Phenyl-3-(2'-hydroxy-5'-methoxyphenyl)-1-propene (47) ${ }^{37 \mathrm{e}}$, and 2,5-Bis-($\mathbf{1}^{\prime}$-phenyl-1'-buten-3'-yl)-4-methoxyphenol (49). Acetate 8 ($100 \mathrm{mg}, 0.57 \mathrm{mmol}$) was reacted
with 4-methoxyphenol (30) ($100 \mathrm{mg}, 0.80 \mathrm{mmol}$) in the presence of catalyst B ($5 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ to afford an 81:19 mixture of 47 and 49 ($101 \mathrm{mg}, 78 \%$) as a colorless oil (Table 1, entry 13). The two compounds were separated by column chromatography on silica ($20 \times 2.5 \mathrm{~cm}$) with a 9:1 hexanes-ethyl acetate mixture as an eluent. The slower moving component was identified as 47: ${ }^{1} \mathrm{H}$ NMR $\delta 3.53$ (d , J $=6.3 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH})$, 6.36 (dt, J $=16.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 6.50(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}$, 1-H), 6.66-6.77 (m, $\left.3 \mathrm{H}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.17-7.37$ (m, 5 H , Ph); MS (EI) m/z (\%) 240 (100, M•+). The faster moving component was identified as 49: ${ }^{1} \mathrm{H}$ NMR $\delta 3.47$ and 3.53 (2 $\times \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \times 2 \mathrm{H}, 3^{\prime}-\mathrm{H}$ and $\left.3^{\prime \prime}-\mathrm{H}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, 4.57 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), $6.28-6.53\left(\mathrm{~m}, 4 \mathrm{H}, 1^{\prime}, 1^{\prime \prime}, 2^{\prime}, 2^{\prime \prime}-\mathrm{H}\right), 6.68(\mathrm{~s}, 2$ $\mathrm{H}, 3-\mathrm{H}$ and $6-\mathrm{H}), 7.15-7.20(\mathrm{~m}, 10 \mathrm{H}, 2 \times \mathrm{Ph}) ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ (\%) 356 ($100, \mathrm{M}^{++}$).

1-Phenyl-3-($1^{\prime}, 3^{\prime}$ 'benzodioxol-5'-yl)-1-propene (50) and 5,6-Bis(1^{\prime}-phenyl-1'-propen-3'-yl)-1,3-benzodioxole (51). Acetate 8 ($100 \mathrm{mg}, 0.57 \mathrm{mmol}$) was reacted with 1,3-benzodioxole (31) ($80 \mathrm{mg}, 0.66 \mathrm{mmol}$) in the presence of catalyst B ($5 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ to give a 79:21 mixture of $\mathbf{5 0}$ and 51 (90 mg, 70\%) as a colorless oil (Table 1, entry 14). The two compounds were separated by column chromatography on silica $(20 \times 2.5 \mathrm{~cm})$ with a 9:1 hexanes-ethyl acetate mixture as eluent. The slower moving component was identified as 50: ${ }^{1} \mathrm{H}$ NMR $\delta 3.45(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}), 5.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right)$, 6.29 (dt, J $=15.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 6.43(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}$, $1-\mathrm{H}), 6.67$ (dd, J $\left.=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 6.72-6.76(\mathrm{~m}, 2 \mathrm{H}$, $4^{\prime}-\mathrm{H}, 7^{\prime}-\mathrm{H}$), 7.15-7.37 (m, 5 H, Ph); MS (EI) m/z (\%) 238 (100, M^{++}). The faster moving component was identified as 51 : ${ }^{1} \mathrm{H}$ NMR $\delta 3.49\left(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 4 \mathrm{H}, 3^{\prime}-\mathrm{H}\right.$ and $\left.3^{\prime \prime}-\mathrm{H}\right), 5.91(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 6.22-6.42\left(\mathrm{~m}, 4 \mathrm{H} ; 1^{\prime}, 1^{\prime \prime}, 2^{\prime}, 2^{\prime \prime}-\mathrm{H}\right), 6.73(\mathrm{~s}, 2 \mathrm{H}, 4-\mathrm{H}$ and 7-H), 7.17-7.33 (m, $10 \mathrm{H}, 2 \times \mathrm{Ph}$); MS (EI) m/z (\%) 354 (63, M++), 250 (100).

1-Phenyl-3-(3', 4'-dimethoxy-2'-methylphenyl)-1-propene (52) and 4,5-Bis(1'-phenyl-1'-propen-3'-yl)-1,2-di-methoxy-3-methylbenzene (53). Acetate $8(100 \mathrm{mg}, 0.57$ mmol) was reacted with 1,2-dimethoxy-3-methylbenzene (32) ($100 \mathrm{mg}, 0.65 \mathrm{mmol}$) in the presence of catalyst $\mathbf{B}(5 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ to give a 77:23 mixture of 52 and $53(81 \mathrm{mg}$, 57%) as a col orless oil (Table 1, entry 15). The two compounds were separated by column chromatography on silica (20×2.5 cm) with a 9:1 hexanes-ethyl acetate mixture as eluent. The slower moving component was identified as 52: ${ }^{1} \mathrm{H}$ NMR $\delta 2.24$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{L}^{\prime}-\mathrm{Me}$), 3.46 (d, J $=4.7 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}$), 3.78 ($\mathrm{s}, 3 \mathrm{H}$, $3^{\prime}-\mathrm{OMe}$), 3.83 (s, $3 \mathrm{H}, 4^{\prime}-\mathrm{OMe}$), $6.23-6.38$ (m, $2 \mathrm{H}, 1-\mathrm{H}$ and $2-\mathrm{H}), 6.71\left(\mathrm{~d}, \mathrm{~J}=8.2,5^{\prime}-\mathrm{H}\right), 6.89\left(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 7.14-$ 7.35 (m, $5 \mathrm{H}, \mathrm{Ph}$); NOESY NMR $\delta 2.24\left(2^{\prime}-\mathrm{Me}\right) \leftrightarrow 3.46$ ($3-\mathrm{H}$), 2.24 ($2^{\prime}-\mathrm{Me}$) $\leftrightarrow 6.32$ (1 - and $2-\mathrm{H}$), 2.24 ($2^{\prime}-\mathrm{Me}$) $\leftrightarrow 3.78$ ($3^{\prime}-\mathrm{OMe}$), $3.46(3-\mathrm{H}) \leftrightarrow 6.89\left(6^{\prime}-\mathrm{H}\right), 3.83\left(4^{\prime}-\mathrm{OMe}\right) \leftrightarrow 6.71$ ($\left.5^{\prime}-\mathrm{H}\right)$; MS (EI) m / z (\%) $268\left(100, \mathrm{M}^{++}\right)$. The faster moving component was identified as 53: ${ }^{1 \mathrm{H}}$ NMR $\delta 2.27$ ($\mathrm{s}, 3 \mathrm{H}, 3-\mathrm{Me}$), 3.54 ($\mathrm{d}, \mathrm{J}=$ $4.7 \mathrm{~Hz}, 4 \mathrm{H}, 3^{\prime}-\mathrm{H}$ and $3^{\prime \prime}-\mathrm{H}$), 3.78 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.85 ($\mathrm{s}, 3 \mathrm{H}$, OMe), 6.17-6.37 (m; $\left.4 \mathrm{H} ; \mathrm{I}^{\prime}-\mathrm{H}, 1^{\prime \prime}-\mathrm{H}, 2^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 6.68$ (s, 1 H , 6-H), 7.14-7.33 (m, 10 H, $2 \times$ Ph); MS (EI) m/z (\%) 384 (100, M^{++}).

1-Phenyl-3-(2'-methylfuran-5'-yl)-1-butene (54) and 4-Phenyl-4-(2 -methylfuran-5'-yl)-2-butene (56). Acetate 7 ($100 \mathrm{mg}, 0.53 \mathrm{mmol}$) was reacted with 2-methylfuran (33) (82 $\mathrm{mg}, 1.00 \mathrm{mmol})$ in the presence of catalyst $\mathbf{B}(5 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}(5 \mathrm{~mL})$ to furnish an inseparable 84:16 mixture of 54 and 56 ($100 \mathrm{mg}, 90 \%$) as a col orless oil (Table 1, entry 6): MS (EI) $\mathrm{m} / \mathrm{z}(\%) 212\left(100, \mathrm{M}^{++}\right) .54{ }^{1} \mathrm{H}$ NMR δ (measured in a mixture with the 56) 1.31 ($\mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{Me}$), 2.14 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{z}^{\prime}-$ $\mathrm{Me}), 3.51(\mathrm{p}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.76$ and $5.80(2 \times \mathrm{m}, 2 \times$ $1 \mathrm{H}, 3^{\prime}-\mathrm{H}$ and $4^{\prime}-\mathrm{H}$), 6.16 (dd; $\left.\mathrm{J}=15.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 6.32$ (d, J $=16.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), 7.01-7.48 (m, 5 H, Ph). 56: ${ }^{1 \mathrm{H}}$ NMR δ (measured in a mixture with the 54) 1.59 ($\mathrm{d}, \mathrm{J}=6.6$ $\mathrm{Hz}, 3 \mathrm{H}, 1-\mathrm{Me}), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, 2^{\prime}-\mathrm{Me}\right), 4.51(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $4-\mathrm{H}), 5.43(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 5.69(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$.

1-Phenyl-3-(2 $\mathbf{2}^{-m e t h y l f u r a n-5 '-y l)-1-p r o p e n e ~(55) ~}{ }^{379}$ and 3-Phenyl-3-(2'-methyl-furan-5'-yl)-1-propene (57). ${ }^{37 \mathrm{~g}} \mathrm{Ace}$ tate 8 ($100 \mathrm{mg}, 0.57 \mathrm{mmol}$) was reacted with 2-methylfuran (33) ($60 \mathrm{mg}, 0.73 \mathrm{mmol}$) in the presence of catalyst \mathbf{B} (5 mol \%) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ to produce an inseparable 75:25 mixture
of 55 and 57 ($50 \mathrm{mg}, \mathbf{4 4 \%}$) as a colorless oil (Table 1, entry 16): MS (EI) m/z (\%) 198 (100, M ${ }^{++}$). 55: ${ }^{1} \mathrm{H}$ NMR $\delta 2.26$ (s, 3 $\left.\mathrm{H}, 2^{\prime}-\mathrm{Me}\right), 3.49(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}), 5.87$ and $5.92(2 \times$ $\mathrm{m}, 2 \times 1 \mathrm{H}, 3^{\prime}-\mathrm{H}$ and $\left.4^{\prime}-\mathrm{H}\right), 6.29(\mathrm{dt}, \mathrm{J}=15.7,6.6 \mathrm{~Hz} ; 1 \mathrm{H}$; $2-\mathrm{H}), 6.48(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 7.17-7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph})$. 57: ${ }^{1} \mathrm{H}$ NMR δ (measured in a mixture with the isomer 55) 2.23 (s, 3 H, 2'-Me), 4.67 (d, J $=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), 5.03 (d, J $=17.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{E}-\mathrm{H}), 5.18(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{Z}-\mathrm{H}), 5.86$ and $5.90\left(2 \times \mathrm{m}, 2 \times 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 6.19(\mathrm{ddd} ; \mathrm{J}=17.0$, 10.1, $7.2 \mathrm{~Hz} ; 1 \mathrm{H} ; 2-\mathrm{H})$.

1-Phenyl-3-(indol-3'-yl)-1-butene (58) and 4-Phenyl-4-(indol-3'-yl)-2-butene (60). Acetate 7 ($100 \mathrm{mg}, 0.53 \mathrm{mmol}$) was reacted with indole (35) ($70 \mathrm{mg}, 0.60 \mathrm{mmol}$) in the presence of catalyst $\mathbf{B}(5 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ to produce an inseparable 67:33 mixture of $\mathbf{5 8}$ and $\mathbf{6 0}$ ($67 \mathrm{mg}, 52 \%$) as a col orless oil (Table 1, entry 7): MS (EI) m/z (\%) 247 (81, M•+), 117 (100). 58: ${ }^{1 \mathrm{H}}$ NMR δ (measured in a mixture with isomer 60) 1.54 ($\mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{Me}$), $3.91(\mathrm{p}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, $3-\mathrm{H}), 6.45(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}$ and 2-H), $6.90(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.2^{\prime}-\mathrm{H}\right), 6.97-7.39$ (m, 9 H , arom). 60: ${ }^{1} \mathrm{H}$ NMR δ (measured in a mixture with isomer 58) 1.70 (d, J $=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 1-\mathrm{Me}$), $4.87(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 5.51(\mathrm{dq}, \mathrm{J}=15.1,6.3 \mathrm{~Hz} 1 \mathrm{H}$; $2-\mathrm{H}), 5.94(\mathrm{dd} ; \mathrm{J}=15.1,7.6 \mathrm{~Hz} ; 1 \mathrm{H} ; 3-\mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}$, $1 \mathrm{H}, 2^{\prime}-\mathrm{H}$), 6.90-4.39 (arom, obscured by the signals corresponding to 58).

1-Phenyl-3-(1'-methylindol-3'-yl)-1-butene (59) and 4-Phenyl-4-(1'-methylindol-3'-yl)-2-butene (61). Acetate 7 ($100 \mathrm{mg}, 0.53 \mathrm{mmol}$) was reacted with 1-methyl indole (36) (80 $\mathrm{mg}, 0.61 \mathrm{mmol})$ in the presence of catalyst $\mathbf{B}(5 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}(5 \mathrm{~mL})$ to afford an inseparable 85:15 mixture of 59 and 61 ($118 \mathrm{mg}, 86 \%$) as a col orless oil (Table 1, entry 8): MS (EI) m / z (\%) 261 (18, M^{++}), 158 (100). 59: ${ }^{1} \mathrm{H}$ NMR δ (measured in a mixture with isomer 61) 1.43 (d, J $=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{Me}$), 3.52 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NMe}$), 3.80 ($\mathrm{p}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), 6.35 (m, 2 $\mathrm{H}, 1-\mathrm{H}$ and $2-\mathrm{H}), 6.69$ (s, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 6.90-7.37$ (m, 9 H , arom). 61: ${ }^{1} \mathrm{H}$ NMR δ (measured in a mixture with isomer 59) 1.60 ($\mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 1-\mathrm{Me}$), 3.51 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NMe}$), 4.76 ($\mathrm{d}, \mathrm{J}=7.2$ $\mathrm{Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 5.51(\mathrm{dq}, \mathrm{J}=15.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.94(\mathrm{dd}$, $\mathrm{J}=15.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.63\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$.

1-Methyl-3-(4'-methoxyphenyl)cyclohexene (62). Acetate $\mathbf{1 5}$ ($100 \mathrm{mg}, 0.65 \mathrm{mmol}$) was reacted with anisole $\mathbf{2 6}$ (100 $\mathrm{mg}, 0.93 \mathrm{mmol}$) at $-10^{\circ} \mathrm{C}$ in the presence of catalyst $\mathbf{B}(5 \mathrm{~mol}$ \%) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) to give 62 ($65 \mathrm{mg}, 50 \%$) as a colorless oil (Table 2, entry 2): ${ }^{1} \mathrm{H}$ NMR $\delta 1.36-2.02\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right.$), 1.73 (s, $3 \mathrm{H}, 1-\mathrm{Me}$), 3.31 (m, $1 \mathrm{H}, 3-\mathrm{H}), 3.77$ (s, $3 \mathrm{H}, \mathrm{OMe}$), 5.41 (br s, 1 H, 2-H), 6.82 (d, J $=8.5 \mathrm{~Hz}, 2$ H 3'-H, 5'-H), 7.11 (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 22.0,30.4,32.9$ ($4,5,6-\mathrm{CH}_{2}$), 24.4 (1-Me), 41.7 (3-CH), 55.7 (OMe), 114.0 ($3^{\prime}, 5^{\prime}-$ CH), $125.2(2-\mathrm{CH}), 129.0\left(2^{\prime}, 6^{\prime}-\mathrm{H}\right), 135.5$ and 139.8 (1-C and $\left.1^{\prime}-\mathrm{C}\right), 158.2$ (4'-C); MS (EI) m/z (\%) 202 (98, M ${ }^{+}$), 187 (100).
1-Methyl-3-(4'-hydroxyphenyl)cyclohex-1-ene (63), 1-Methyl-3-(2-hydroxyphenyl)cyclohex-1-ene (66), and 3,4,5,6-Tetrahydro-2-methyl-2,6-methano-2H-1-benzocin (73). ${ }^{371}$ Acetate 15 ($100 \mathrm{mg}, 0.65 \mathrm{mmol}$) was reacted with phenol (27) ($330 \mathrm{mg}, 3.51 \mathrm{mmol}$) in the presence of catalyst B ($5 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. Column chromatography of the crude product on silica gel ($15 \times 2 \mathrm{~cm}$) with a 9:1 hexanesethyl acetate mixture as eluent afforded (in the order of elution) $\mathbf{6 3}$ ($46 \mathrm{mg}, 38 \%$) and $\mathbf{7 3}$ ($26 \mathrm{mg}, 21 \%$) as colorless oils (Table 2, entry 3). The same reaction with catalyst C (5 mol $\%$) afforded $\mathbf{7 3}$ ($25 \mathrm{mg}, 20 \%$) and a 1:4 mixture of 63 and 66 ($29 \mathrm{mg}, 24 \%$). (Table 2, entry 4). The latter mixture was separated by preparative HPLC on Partisil 10 column with a 95:5 mixture hexanes-ethyl acetate (Table 1, entry 4). 63: ${ }^{1} \mathrm{H}$ NMR $\delta 1.25-1.95\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 1.61(\mathrm{~s}, 3 \mathrm{H}, 1-\mathrm{Me}), 3.18$ ($\mathrm{m}, 1 \mathrm{H}, 3-\mathrm{H}$), $5.28(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, 2-\mathrm{H}$ and OH$), 6.65(\mathrm{~d}, \mathrm{~J}=8.5$ $\left.\mathrm{Hz}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 6.94\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.9,30.3,32.9\left(4,5,6-\mathrm{CH}_{2}\right), 24.4$ (1-Me), 41.7 (3-CH), $115.4\left(3^{\prime}, 5^{\prime}-\mathrm{CH}\right), 125.1(2-\mathrm{CH}), 129.2$ ($2^{\prime}, 6^{\prime}-\mathrm{CH}$), 135.6 and 140.0 ($1-\mathrm{C}$ and $\mathrm{I}^{\prime}-\mathrm{C}$), 153.9 ($4^{\prime}-\mathrm{C}$); MS (EI) m / z (\%) 188 ($96, \mathrm{M}^{++}$), 120 (100). 66: ${ }^{1} \mathrm{H}$ NMR $\delta 1.52-2.10\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right.$), $1.70(\mathrm{~s}, 3$ H, 1-Me), 3.48 (m, $1 \mathrm{H}, 3-\mathrm{H}$), $5.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.58(\mathrm{~s}, 1 \mathrm{H}$, 2-H), $6.82\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{z}^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right) .73$: ${ }^{1 \mathrm{H}}$ NMR $\delta 1.35$ (s, $3 \mathrm{H}, 2-\mathrm{Me}$), $1.43-1.81\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{CH}_{2}\right), 3.04$ $(\mathrm{m}, 1 \mathrm{H}, 6-\mathrm{H}), 6.78(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H}$ and $10-\mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=7.6$
$\mathrm{Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.09(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 18.7$, 33.0, 36.3, and $39.8\left(3,4,5,11-\mathrm{CH}_{2}\right), 29.8$ (2-Me), 33.4 (6-CH), 75.1 (2-C), 115.4 (10-CH), 119.5 (8-CH), 126.4 (6a-C), 127.7 and 128.5 ($7-$ and $9-C H$), 157.9 ($10 \mathrm{a}-\mathrm{C}$); MS (EI) m/z (\%) 188 (77, M•+), 120 (100).

1,5,5-Trimethyl-3-(4'hydroxyphenyl)cyclohex-1-ene (64) and 3,4,5,6-Tetrahydro-2,4,4-trimethyl-2,6-methano-2H-1-benzocin (75). Acetate 16 ($100 \mathrm{mg}, 0.55 \mathrm{mmol}$) was reacted with phenol (27) ($150 \mathrm{mg}, 1.60 \mathrm{mmol}$) in the presence of catalyst B ($5 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. Column chromatography of the crude product on silica gel ($15 \times 2 \mathrm{~cm}$) with a 9:1 hexanes-ethyl acetate mixture as eluent afforded (in the order of elution) $64(10 \mathrm{mg}, 8 \%)$ and $75(17 \mathrm{mg}, 14 \%)$ as colorless oils (Table 2, entry 8). 64: ${ }^{1} \mathrm{H}$ NMR $\delta 0.96$ (s, $6 \mathrm{H}, 2 \times 5-\mathrm{Me}$), $1.50-1.90(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}$ and 6-H), 1.71 (s, $3 \mathrm{H}, 1-\mathrm{Me}$), 3.30 (m, $1 \mathrm{H}, 3-\mathrm{H}$), 4.91 (br s, $1 \mathrm{H}, \mathrm{OH}$), 5.36 (br s, $1 \mathrm{H}, 2-\mathrm{H}$), 6.76 (d, $\left.\mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.06\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}\right.$, $\left.6^{\prime}-\mathrm{H}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta 23.0$ and 24.2 ($2 \times 5-\mathrm{Me}$), 29.4 ($5-\mathrm{C}$), 30.8 ($1-\mathrm{Me}$), $39.0(3-\mathrm{CH}), 43.0$ and 45.3 (4 - and $6-\mathrm{CH}_{2}$), 114.1 ($3^{\prime}, 5^{\prime}-$ CH), 122.6 ($2-\mathrm{CH}$), 127.7 ($2^{\prime}, 6^{\prime}-\mathrm{CH}$), 133.7 and 138.7 ($1-\mathrm{C}$ and $\left.1^{\prime}-C\right), 152.6$ (4'-C); MS (EI) m/z (\%) 216 (62, M•+), 98 (100). 75: ${ }^{1} \mathrm{H}$ NMR $\delta 0.54$ (s, $3 \mathrm{H}, 4-\mathrm{Me} \mathrm{e}_{\mathrm{a}}$), 0.89 (s, $3 \mathrm{H}, 4-\mathrm{Me} \mathrm{e}_{\mathrm{b}}$), 1.40 (s, 3 $\mathrm{H}, 2-\mathrm{Me}), 1.54-1.92\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 3.03(\mathrm{p}, \mathrm{J}=3.3 \mathrm{~Hz}, 1$ $\mathrm{H}, 6-\mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 6.77(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1$ $\mathrm{H}, 8-\mathrm{H}), 7.07$ (m, $2 \mathrm{H}, 7-\mathrm{H}$ and $9-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 29.6,30.6$, and 33.1 (2, 4,4-Me), 29.9 (4-C), 37.2 ($6-\mathrm{CH}$), 36.3, 45.7, and 52.0 (3,5,11-CH2), 75.5 (2-C), 115.7 (10-CH), 119.5 ($8-\mathrm{CH}$), 127.9 and 128.5 (7 - and 9-CH), 128.1 (6a), 156.1 (10a); MS (EI) $\mathrm{m} / \mathrm{z}(\%) 216$ (90, M^{++}) 145 (100).

3-(4'-Methoxyphenyl)cyclohex-1-ene (65) ${ }^{37 \mathrm{~h}}$ and 3-(2' Methoxyphenyl)cyclohex-1-ene (70). ${ }^{37 \mathrm{i}}$ Acetate 17 (100 mg , 0.71 mmol) was reacted with anisole ($\mathbf{2 6}$) ($150 \mathrm{mg}, 1.39 \mathrm{mmol}$) in the presence of catalyst B ($5 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ to produce a $57: 43$ mixture of 65 and $70(75 \mathrm{mg}, 56 \%)$ as a colorless oil (Table 2, entry 11). The two compounds were separated by column chromatography on silica gel (20×2.5 cm) with a 95:5 hexanes-ethyl acetate mixture (95:5) as eluent. The slower moving component was identified as 65: ${ }^{1} \mathrm{H}$ NMR $\delta 1.45-2.12\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 3.34(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, 3.78 (s, $3 \mathrm{H}, \mathrm{OMe}$), 5.69 (dd, J $=10.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), 5.86 (ddd, J 10.1, 6.0, $3.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), $6.84(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, $3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}$), 7.13 ($\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}$); MS (EI) m/z (\%) $188\left(\mathrm{M}^{+}, 100\right)$. The faster moving component was identified as 70: ${ }^{1} \mathrm{H}$ NMR $\delta 1.47-2.07\left(\mathrm{~m}, 6 \mathrm{H} ; 3 \times \mathrm{CH}_{2}\right.$), $3.82(\mathrm{~s}, 3 \mathrm{H}$, OMe), 3.85 (m, 1 H, 3-H), 5.66 (dd, J $=10.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), 5.90 (ddd, J $=10.1,6.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), 6.89 (m, $2 \mathrm{H}, 3^{\prime}-\mathrm{H}$, $\left.5^{\prime}-\mathrm{H}\right), 7.18$ (m, $2 \mathrm{H}, 4^{\prime}-\mathrm{H}, \mathrm{G}^{\prime}-\mathrm{H}$); MS (EI) m/z (\%) 188 (100, M•+).

3-(2'Hydroxyphenyl)cyclohexene (71). ${ }^{37 \mathrm{j}}$ Acetate 17 ($100 \mathrm{mg}, 0.71 \mathrm{mmol}$) was reacted with phenol (27) (200 mg , 2.13 mmol) in the presence of catalyst B ($5 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) to afford a 90:10 mixture of 71 and a bis-allylated product ($93 \mathrm{mg}, 79 \%$) as a col orless oil (Table 2, entry 13). GSMS showed the molecular ions for the two products to be 174 and 254 . The same reaction with catalyst $\mathbf{C}(5 \mathrm{~mol} \%)$ gave rise to a 95:5 mixture of 71 and a bis-allylated product (101 $\mathrm{mg}, 83 \%$) (Table 2, entry 14). Column chromatography of the former mixture on silica gel $(20 \times 2.5 \mathrm{~cm})$ with a 9:1 hexanesethyl acetate mixture as eluent furnished 71 (90 mg): ${ }^{1} \mathrm{H}$ NMR $\delta 1.48-2.17\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 3.58(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 5.46(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{OH}), 5.80(\mathrm{dm}, \mathrm{J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 6.04$ (ddd, J = 10.1, $6.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 6.71-6.96\left(\mathrm{~m}, 3 \mathrm{H}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$, 7.10 (m, 1 H, 4'-H); MS (EI) m/z (\%) 174 (100, M ${ }^{++}$).

3-(2'-Hydroxy-5'-methylphenyl)cyclohex-1-ene (72) ${ }^{37 \mathrm{k}}$ and 2,6-Bis(cyclohex-2 -en-1'-yl)-4-methylphenol. Acetate 17 ($130 \mathrm{mg} ; 0.92 \mathrm{mmol}$) was reacted with p-cresole (29) (385 $\mathrm{mg}, 3.56 \mathrm{mmol})$ in the presence of catalyst $\mathbf{C}(5 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}(5 \mathrm{~mL})$ to produce an 84:16 mixture of 72 and 2,6 -bis $\left(2^{\prime}-\right.$ cyclohexenyl)-4-methylphenol ($150 \mathrm{mg}, 91 \%$) as a colorless oil (Table 2, entry 15). The two compounds were separated by column chromatography on silica ($20 \times 2.5 \mathrm{~cm}$) with a 9:1 hexanes-ethyl acetate mixture as eluent. The slower moving component was identified as 72: ${ }^{1} \mathrm{H}$ NMR $\delta 1.58-2.14$ ($\mathrm{m}, 6$ $\mathrm{H} ; 3 \times \mathrm{CH}_{2}$), $2.24\left(\mathrm{~s}, 3 \mathrm{H}, 5^{\prime}-\mathrm{Me}\right)$, 3.54 (m, $1 \mathrm{H}, 3-\mathrm{H}$), 5.35 (s, $1 \mathrm{H}, \mathrm{OH}$), 5.79 (dd, J $=10.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 6.01$ (ddd, J $=$ $10.1,6.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 6.67\left(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right)$,
6.87 (m, 2 H, $4^{\prime}-\mathrm{H}$ and $6^{\prime}-\mathrm{H}$); MS (EI) m/z (\%) 188 (100, M•+). The faster moving component was identified as 2,6 -bis-(cyclohex-2'-en-1'-yl)-4-methylphenol: ${ }^{1} \mathrm{H}$ NMR δ 1.55-2.12 ($\mathrm{m}, 12 \mathrm{H}, 6 \times \mathrm{CH}_{2}$), $2.24(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{Me}), 3.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{l}^{\prime} \mathrm{H}\right.$, $\left.1^{\prime \prime}-\mathrm{H}\right), 5.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.79\left(\mathrm{~d}, \mathrm{~J}=10.1,2 \mathrm{H}, 2^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right)$, 6.00 (ddd, J = 10.1, 6.0, 3.5 Hz, 1 H, 3'-H, 3"-H), 6.80 (s, 2 H, $3-\mathrm{H}$ and $5-\mathrm{H}$); MS (EI) m/z (\%) 268 (100, M•+).

3,4,5,6-Tetrahydro-2,8-dimethyl-2,6-methano-2H-1-benzocin (74). Acetate 15 ($100 \mathrm{mg}, 0.65 \mathrm{mmol}$) was reacted with p-cresol (29) ($710 \mathrm{mg}, 6.57 \mathrm{mmol}$) in the presence of catalyst B ($5 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ to afford $\mathbf{7 4}(101 \mathrm{mg}, 77 \%)$ as a col orless oil (Table 2, entry 5): ${ }^{1} \mathrm{H}$ HMR $\delta 1.38$ (s, $3 \mathrm{H}, 2-\mathrm{Me}$), $1.48-1.97\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{CH}_{2}\right), 2.29(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{Me}) 3.02(\mathrm{p}, \mathrm{J}=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 6.94 (dd, J $=8.2 \mathrm{~Hz}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 18.8,33.1,36.5,40.0\left(3,4,5,11-\mathrm{CH}_{2}\right), 20.9$ (8-Me), 29.9 (2-Me), 33.5 ($6-\mathrm{CH}$), 74.9 (2-C), 115.2 (10-CH), 126.1 and 128.4 ($6 \mathrm{a}-\mathrm{and} 8-\mathrm{C}$), 128.5 and 129.0 (7 - and 9-CH), 154.9 (10aC); IR v 3020, 2980, 2925, 2870, 2850, 1620, 1590, 1490, 1450 $\mathrm{cm}^{-1} ; \mathrm{MS}(E I) \mathrm{m} / \mathrm{z}$ (\%) 202 (100, M^{++}).

3,4,5,6-Tetrahydro-2,4,4,8-tetramethyl-2,6-methano-2H-1-benzocin (76). Acetate $\mathbf{1 6}$ ($294 \mathrm{mg}, 1.62 \mathrm{mmol}$) was reacted with p-cresol (29) ($2.06 \mathrm{~g}, 19.07 \mathrm{mmol}$) in the presence of catalyst B (5 mol \%) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ to furnish 76 (298 $\mathrm{mg}, 80 \%$) as a colorless oil (Table 2, entry 9): ${ }^{1} \mathrm{H}$ NMR $\delta 0.58$ ($\mathrm{s}, 3 \mathrm{H}, 4-\mathrm{Me}_{\mathrm{a}}$), 0.90 (s, $3 \mathrm{H}, 4-\mathrm{Me}_{\mathrm{b}}$), 1.4 (s, $3 \mathrm{H}, 2-\mathrm{Me}$), 1.45$1,89\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 2.27(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{Me}), 3.0(\mathrm{p}, \mathrm{J}=3.5 \mathrm{~Hz}$, $1 \mathrm{H}, 4-\mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}$, $1 \mathrm{H}, 7-\mathrm{H}$), 6.94 (dd, J $=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 20.9$ (8-Me), 29.7, 30.6 and 33.1 (2,4,4-Me), 30.0 (4-C), 36.5, 45.7 and $52.1\left(3,5,11-\mathrm{CH}_{2}\right), 37.2(6-\mathrm{CH}), 75.3$ (2-C), $115.4(10-\mathrm{CH})$, 127.5 and 128.5 (6 a- and $8-\mathrm{C}$), 128.8 and 129.0 (7 - and $9-\mathrm{CH}$), 153.9 (10a); IR v 3060, 3010, 2980-2860, 2840, 1620, 1590, $1500,1460 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%) 230 (100, M^{++}).
3-(4'-Methoxyphenyl)cyclopent-1-ene (77). ${ }^{37 \mathrm{~h}}$ Acetate 19 ($100 \mathrm{mg}, 0.79 \mathrm{mmol}$) was reacted with anisole (26) (150 mg , 1.39 mmol) in the presence of catalyst B (5 mol \%) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) to give an 80:20 mixture of $\mathbf{7 7}$ and bis-allylated products ($64 \mathrm{mg}, 50 \%$) as a colorless oil (Table 2, entry 16). The GS-MS analysis of the crude product mixture showed the presence of two compounds (11% and 9%) with the molecular ion 240 corresponding tothe isomeric bis-allylated products. Pure $\mathbf{7 7}$ was obtained from that mixture by column chromatography on silica gel $(20 \times 2.5 \mathrm{~cm})$ with a 9:1 hexanes-ethyl acetate mixture as an eluent: ${ }^{1} \mathrm{H}$ NMR $\delta 1.58-1.68$ and 2.11-2.45 ($2 \times$ $\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), 3.73 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.79 (m, $1 \mathrm{H}, 3-\mathrm{H}$), 5.70 (ddd, J = 5.7, 3.8, $1.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), 5.85 (ddd, J $=5.7,4.4$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 6.78\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.05(\mathrm{~d}$, $\mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}$); MS (EI) m/z (\%) 174 ($100, \mathrm{M}^{++}$).

3-(2-Hydroxyphenyl)cyclopent-1-ene (78). ${ }^{37 i}$ Acetate 19 ($100 \mathrm{mg}, 0.79 \mathrm{mmol}$) was reacted with phenol (27) (200 mg , 2.13 mmol) in the presence of catalyst $\mathbf{B}(5 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) to give an 87:13 mixture of $\mathbf{7 8}$ and a bis-allylated products ($48 \mathrm{mg}, 41 \%$) as a colorless oil (Table 2, entry 17). The GS-MS analysis of the crude product mixture showed the presence of two compounds (8% and 5%) with the molecular ion 226 corresponding to the isomeric bis-allylated products. Pure $\mathbf{7 8}$ was obtained from that mixture by column chromatography on silica gel $(20 \times 2.5 \mathrm{~cm})$ with a 9:1 hexanes-ethyl acetate mixture as an eluent: ${ }^{1} \mathrm{H}$ NMR $\delta 1.53-1.84$ and $2.36-$ $2.57(2 \times \mathrm{m}, 4 \mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 5.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{OH}), 5.89$ ($\mathrm{m}, 1 \mathrm{H}, 2-\mathrm{H}$), 6.07 (m, $1 \mathrm{H}, 1-\mathrm{H}), 6.71-7.26$ ($\mathrm{m}, 4 \mathrm{H}$, $3^{\prime}-\mathrm{H}, \mathrm{6}^{\prime}-\mathrm{H}$); MS (EI) m/z (\%) 160 ($100, \mathrm{M}++$).
3-(1', $\mathbf{3}^{\prime}$-Benzodioxol-5'-yl)-cyclopent-1-ene (79). Acetate 19 ($100 \mathrm{mg}, 0.79 \mathrm{mmol}$) was reacted with 1,3-benzodioxole (31) ($150 \mathrm{mg}, 1.23 \mathrm{mmol}$) in the presence of catalyst $\mathbf{B}(5 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) to furnish 79 ($70 \mathrm{mg}, 47 \%$) as a colorless oil (Table 2, entry 18): ${ }^{1} \mathrm{H}$ NMR $\delta 1.51-1.63$ and 2.20-2.40 ($2 \times$ $\mathrm{m}, 4 \mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 5.64(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}, 2-\mathrm{H})$, $5.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.55\left(\mathrm{dd}, \mathrm{J}=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right)$, $6.58\left(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 6.63\left(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right)$; MS (EI) m/z (\%) 188 ($100, \mathrm{M}^{++}$).

3-(3',4'-Dimethoxy-2'-methylphenyl)-cyclopent-1-ene (80). Acetate 19 ($100 \mathrm{mg}, 0.79 \mathrm{mmol}$) was reacted with 1,2-dimethoxy-3-methylbenzene (32) ($160 \mathrm{mg}, 1.05 \mathrm{mmol}$) in the
presence of catalyst B ($5 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ to furnish 80 ($128 \mathrm{mg}, 74 \%$) as a colorless oil (Table 2, entry 19): ${ }^{1} \mathrm{H}$ NMR $\delta 1.50-1.65$ and $2.35-2.46(2 \times \mathrm{m}, 4 \mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}), 2.27(\mathrm{~s}, 3$ H, 2'-Me), 3.77 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.80 (s, $3 \mathrm{H}, \mathrm{OMe}$), 4.01 (m, 1 H , $3-\mathrm{H}$), 5.73 (ddd, J $=5.7,4.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.92$ (ddd, J = $5.7,4.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 6.68\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 6.81$ (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}$); MS (EI) m/z (\%) 218 (30, M ${ }^{+}$), 152 (100).

2-Methyl-4-(4'-methoxyphenyl)-2-butene (81). ${ }^{37 \mathrm{~m}} \mathrm{Ac}-$ etate 20 ($100 \mathrm{mg}, 0.70 \mathrm{mmol}$) was reacted with anisole (26) ($100 \mathrm{mg}, 0.93 \mathrm{mmol}$) in the presence of catalyst $\mathbf{B}(5 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) to furnish 81 ($32 \mathrm{mg}, 24 \%$) as a colorless oil (Table 2, entry 20): ${ }^{1} \mathrm{H}$ NMR $\delta 1.27$ ($\mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 5-\mathrm{CH}_{3}$), 1.67 and $1.69(2 \times \mathrm{d}, \mathrm{J}=1.5$ and $1.2 \mathrm{~Hz}, 2 \times 3 \mathrm{H}$, 1 - and $2-$ CH_{3}), $3.61(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 5.24(\mathrm{dm}, \mathrm{J}=9.1$ $\mathrm{Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.83\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.14(\mathrm{~d}$, $\mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{2}^{\prime}-\mathrm{H}$ and $6^{\prime}-\mathrm{H}$); MS (EI) m/z (\%) 190 (28, M•+), 175 (100).

2-Methyl-4-(4'-methoxyphenyl)-2-butene (82). ${ }^{37 n-5}$ Method A. Acetate 21 ($100 \mathrm{mg}, 0.78 \mathrm{mmol}$) was reacted with anisole (26) ($100 \mathrm{mg}, 0.93 \mathrm{mmol}$) in the presence of the catalyst B (5 $\mathrm{mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ to furnish a 73:27 mixture of 82 and the corresponding ortho-isomer ($57 \mathrm{mg}, 42 \%$) as a col orless oil (Table 2, entry 22). Pure 82 was obtained from that mixture by column chromatography on silica gel ($20 \times 2.5 \mathrm{~cm}$) with a 95:5 hexanes-ethyl acetate mixture as an eluent: ${ }^{1} \mathrm{H}$ NMR δ 1.71 (s, $3 \mathrm{H}, \mathrm{Me}$), 1.73 (s, $3 \mathrm{H}, \mathrm{Me}$), 3.27 (d, J $=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $4-\mathrm{H}$), 3.77 (s, $3 \mathrm{H}, \mathrm{OMe}$), 5.24 (br t, J $=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), 6.82 $\left(\mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.18(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, $2^{\prime}-\mathrm{H}$ and $6^{\prime}-\mathrm{H}$); MS (EI) m/z (\%) 176 (36, M+ ${ }^{+}$), 121 (100).

Method B. The reaction of $\mathbf{2 2}$ with anisole (26) was carried out as described in method A to afford 82 ($65 \mathrm{mg}, 47 \%$; Table 2, entry 24). The GC-MS analysis of the product showed the presence of the ortho isomer (less than 5\%).

3,4-Dihydro-2,2,4-trimethyl-2H-benzopyran (85). ${ }^{37 \mathrm{t}} \mathrm{Ac}-$ etate $\mathbf{2 0}$ ($80 \mathrm{mg}, 0.56 \mathrm{mmol}$) was reacted with phenol (27) (260 $\mathrm{mg}, 2.77 \mathrm{mmol}$) in the presence of catalyst $\mathbf{B}(5 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}(5 \mathrm{~mL})$ to give an 95:5 mixture of $\mathbf{8 5}$ and bis-allylated products ($19 \mathrm{mg}, 19 \%$) as a colorless oil (Table 2, entry 21). The GS-MS analysis of the crude product mixture showed the presence of two compounds (3% and 2%) with the molecular ions 258 corresponding to the isomeric bis-allylated products. Pure 85 was obtained from that mixture by column chromatography on silica gel ($20 \times 2.5 \mathrm{~cm}$) with a 9:1 hexanes-ethyl acetate mixture as an eluent: ${ }^{1} \mathrm{H}$ NMR $\delta 1.25(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, 1.41 (s, 3H, Me), 1.33 (d, J = $6.6 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{Me}$), 1.70 (m, 2 H , CH_{2}), $2.95(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 6.85$ (t, J $=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.08$ (dd; J $=8.2,7.3 \mathrm{~Hz} ; 1 \mathrm{H}, 7-\mathrm{H}$), $7.23(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 20.7$ and 25.0 ($2 \times$ 2-Me), 26.7 ($4-\mathrm{CH}$), 30.5 (4-Me), 43.1 (3-CH 2), 74.7 (2-C), 117.6 and 120.2 ($6-$ and $8-\mathrm{CH}$), 127.5 and 127.7 ($5-$ and $7-\mathrm{CH}$), 126.7 (4a-C), 153.9 ($8 \mathrm{a}-\mathrm{C}$); MS (EI) m/z (\%) 176 (46, M++), 121 (100).

3,4-Dihydro-2,2-dimethyl-2H-benzopyran (86). ${ }^{37 \mathrm{~h}}$ Method A. Acetate 21 ($100 \mathrm{mg}, 0.78 \mathrm{mmol}$) was reacted with phenol (27) $(150 \mathrm{mg}, 1.60 \mathrm{mmol})$ in the presence of catalyst $\mathbf{B}(5 \mathrm{~mol}$ $\%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ to afford a 90:10 mixture of 86 and a bisallylated product ($32 \mathrm{mg}, 27 \%$) as a colorless oil (Table 2, entry 23). Pure 86 was obtained from that mixture by column chromatography on silica gel $(20 \times 2.5 \mathrm{~cm})$ with a 9:1 hexanes-ethyl acetate mixture as an eluent: ${ }^{1} \mathrm{H}$ NMR $\delta 1.33$ (s, $6 \mathrm{H}, 2 \times$ $\left.2-\mathrm{CH}_{3}\right), 1.80(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 2.77(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}), 6.71-$ 7.11 (m, 4 H , arom); ${ }^{13} \mathrm{C}$ NMR $\delta 22.9\left(3-\mathrm{CH}_{2}\right), 27.3(2 \times 2-\mathrm{Me})$, $33.2\left(4-\mathrm{CH}_{2}\right), 74.5(2-\mathrm{C}), 117.7$ and 120.0 (6 - and $8-\mathrm{CH}$), 121.3 (4a-C), 127.7 and 129.8 ($5-$ and 7-CH), 154.4 (8a-C).

Method B. The reaction of 22 with phenol (27) was carried out as described in method A to afford an 80:20 mixture of $\mathbf{8 6}$ and a bis-allylated product ($55 \mathrm{mg}, 48 \%$) as a colorless oil (Table 2, entry 25), identical with the product obtained from 21 and 27 (see above).

5-(3'-Methylcyclohex-2'-en-1'-yl)furfuryl Acetate (87). Acetate 15 ($120 \mathrm{mg}, 0.78 \mathrm{mmol}$) was reacted with furfuryl acetate (34) ($140 \mathrm{mg}, 1.0 \mathrm{mmol}$) in the presence of catalyst B ($5 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ to yield $87(120 \mathrm{mg}, 65 \%)$ as a colorless oil (Table 2, entry 6): ${ }^{1} \mathrm{H}$ NMR δ 1.56-1.94 (m, 6 H , $3 \times \mathrm{CH}_{2}$), $1.70\left(\mathrm{~s}, 3 \mathrm{H}, 3^{\prime}-\mathrm{Me}\right), 2.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeCO}), 3.42(\mathrm{~m}, 1$
$\left.\mathrm{H}, \mathrm{I}^{\prime}-\mathrm{H}\right), 5.00\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}\right.$) , $5.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{L}^{\prime}-\mathrm{H}\right), 5.94(\mathrm{~d}, \mathrm{~J}=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 6.29(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $21.2\left(\mathrm{CH}_{3} \mathrm{CO}\right), 24.3\left(3^{\prime}-\mathrm{CH}_{3}\right), 21.3,28.2$ and $30.3\left(4^{\prime}, 5^{\prime}, 6^{\prime}-\mathrm{CH}_{2}\right)$, 35.7 ($\left.1^{\prime}-\mathrm{CH}\right), 58.8\left(\mathrm{OCH}_{2}\right), 105.8$ and 111.7 (3,4-CH), 121.3 (2'CH), 136.5 (C), 148.0 (C), 161.0 (C), 171.1 (CO); MS (EI) m/z (\%) 234 (12, M ${ }^{++}$), 79 (100).

1-Methyl-3-(1'-methylindol-3'-yl)cyclohex-1-ene (88). Acetate 15 ($100 \mathrm{mg}, 0.65 \mathrm{mmol}$) was reacted with 1-methyl indole (36) ($100 \mathrm{mg}, 0.76 \mathrm{mmol}$) in the presence of catalyst \mathbf{B} (5 mol \%) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ to furnish 88 ($125 \mathrm{mg}, 85 \%$) as a col orless oil (Table2, entry 7): ${ }^{1} \mathrm{H}$ NMR $\delta 1.63-2.01\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right)$, 1.73 (s, $3 \mathrm{H}, 1-\mathrm{Me}), 3.64$ (s, $3 \mathrm{H}, \mathrm{NMe}$), 3.67 (m, $1 \mathrm{H}, 3-\mathrm{H}$), 5.57 (m, $1 \mathrm{H}, 2-\mathrm{H}$), $6.74\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.06(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.5^{\prime}-\mathrm{H}\right), 7.22\left(\mathrm{~m}, 2 \mathrm{H}, 6^{\prime}-\mathrm{H}\right.$ and $\left.7^{\prime}-\mathrm{H}\right), 7.61(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, $4^{\prime}-\mathrm{H}$); MS (EI) m/z (\%) 225 (100, M+ ${ }^{+}$).

1,5,5-Trimethyl-3-(1'-methylindol-3'-yl)cyclohex-1ene (89). Acetate 16 ($141 \mathrm{mg}, 0.78 \mathrm{mmol}$) was reacted with 1-methylindole (36) ($514 \mathrm{mg}, 3.92 \mathrm{mmol}$) in the presence of catalyst B ($5 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ to furnish 89 (143 mg , 70%) as a colorless oil (Table 2, entry 10): ${ }^{1} \mathrm{H}$ HMR $\delta 0.95$ (s, $3 \mathrm{H}, 5-\mathrm{Me}_{\mathrm{a}}$), 1.02 (s, $3 \mathrm{H}, 5-\mathrm{Me}_{\mathrm{b}}$), 1.45-1.95 (m, $4 \mathrm{H}, 4-\mathrm{H}$ and $6-\mathrm{H}$), 1.70 (s, $3 \mathrm{H}, 3-\mathrm{Me}$), 3.65 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NMe}$), 5.50 (br s, 1 H , 2-H), $6.70\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.02\left(\mathrm{~m}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.19$ (m, $2 \mathrm{H}, 6^{\prime}-$ and $7^{\prime}-\mathrm{H}$), 7.68 (d, J $=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 24.4$ and 25.8 ($2 \times 5-\mathrm{Me}$), 30.8 (5-C), 32.0 (1-Me), 32.4 (NMe), 33.0 (3$\mathrm{CH}), 44.5$ and $44.7\left(4-\right.$ and $\left.6-\mathrm{CH}_{2}\right), 109.7(\mathrm{CH}), 118.9(\mathrm{CH})$, 120.0 (CH), 120.5 (C), 121.9 (CH), 124.4 (CH), 125.6 (CH), 127.6 (C), 133.3 (C), 137.8 (C); MS (EI) m/z (\%) 262 (100, M ${ }^{++ \text {). }}$
(E)-3-(2-Hydroxyphenyl)-5-carbomethoxy-1-cyclohexene (90) and (E)-3-(4'-Hydroxyphenyl)-5-carbomethoxy-1-cyclohexene (91). Acetate 23 ($100 \mathrm{mg}, 0.51 \mathrm{mmol}$) was reacted with phenol (27) ($100 \mathrm{mg}, 1.06 \mathrm{mmol})$ in the presence of catalyst B ($5 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ to give a $90: 10$ mixture of o- and p-isomers $\mathbf{9 0}$ and 91 ($69 \mathrm{mg}, 59 \%$) as a white solid (Table 2, entry 26): MS (EI) m/z (\%) 232 (77, M•+), 172 (100). Compounds 90 and 91 were separated by preparative HPLC with a 98:2 hexanes-ethyl acetate mixture as an eluent. 90: ${ }^{1} \mathrm{H}$ NMR $\delta 2.08$ (m, $2 \mathrm{H}, 4-\mathrm{H}$), 2.38 (m, $2 \mathrm{H}, 6-\mathrm{H}$), 2.61 ($\mathrm{m}, 1 \mathrm{H}$, $5-\mathrm{H}), 3.65$ (s, 3H, OMe), 3.88 (m, $1 \mathrm{H}, 3-\mathrm{H}$), 5.78 (m, $1 \mathrm{H}, 1-\mathrm{H}$), 5.98 (m, 1 H, 2-H), 6.03 (s, 1 H, OH), 6.76-6.88 (m, 2 H, 3'and $\left.5^{\prime}-\mathrm{H}\right), 7.08\left(\mathrm{~m}, 2 \mathrm{H}, 4^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right) .91$: ${ }^{1} \mathrm{H}$ NMR $\delta 1.92(\mathrm{dt}$, $\left.\mathrm{J}=12.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.12$ (ddd, J $=12.9,10.7,6.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 2.34(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.50(\mathrm{~m}, 1$ $\mathrm{H}, 3-\mathrm{H}$), 3.65 (s, $3 \mathrm{H}, \mathrm{OMe}$), 4.74 (s, $1 \mathrm{H}, \mathrm{OH}$), 5.74 (m, 1 H , $1-\mathrm{H}), 5.93(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 6.77\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.08\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 4^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$.
1-(2'-H ydroxyphenyl)-3a,4,5,6,7,7a-hexahydro-(1 $\alpha,-$ $3 \mathrm{a} \alpha, 4 \alpha, 7 \alpha, 7 a \alpha)-4,7-m e t h a n o-1 H-i n d e n e$ (92). Acetate 24 ($100 \mathrm{mg}, 0.52 \mathrm{mmol}$) was reacted with phenol (27) (490 mg , $5.21 \mathrm{mmol})$ in the presence of catalyst $\mathbf{B}(5 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) to afford 92 ($59 \mathrm{mg}, 51 \%$) as a colorless oil (Table 2, entry 29): ${ }^{1} \mathrm{H}$ NMR $\delta 1.25-1.46$ ($\mathrm{m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}$), 2.37 ($\mathrm{m}, 3$ H, 4-H, 7-H, 7a-H), 3.22 (m, 1 H, 3a-H), 3.88 (br s, 1 H, 1-H), 5.37 (s, 1 H, OH), 5.86 (m, 2 H, 2-H, 3-H), $6.80\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}\right.$, $5^{\prime}-\mathrm{H}$), $7.05\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta 23.3$ and 25.6 ($5,6-$ $\left.\mathrm{CH}_{2}\right)$; 39.6, 41.6, $47.4(4,7,7 \mathrm{a}-\mathrm{CH}), 41.6\left(8-\mathrm{CH}_{2}\right), 52.9$ and 53.6 (1,3a-CH); 116.5, 121.0, 127.8, and 129.4 (3'-6'-CH), 132.3 ($1^{\prime}-$ C), 133.8 and 136.6 ($2,3-\mathrm{CH}$), 154.7 ($2^{\prime}-\mathrm{CH}$); MS (EI) m/z (\%) 226 (22, M•+), 159 (100).

1-(4'-Methoxyphenyl)-3a,4,5,6,7,7a-hexahydro-(1 $\alpha,-$ 3a $\alpha, 4 \alpha, 7 \alpha, 7 a \alpha$)-4,7-methano-1H-indene (93). Acetate 24 (70 $\mathrm{mg}, 0.36 \mathrm{mmol}$) was reacted with anisole (26) ($560 \mathrm{mg}, 5.19$ mmol) in the presence of catalyst B ($5 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) to afford 93 ($66 \mathrm{mg}, 75 \%$) as a colorless oil (Table 2, entry 28). The GC-MS analysis of the product showed the presence of bis-allylated compound ($\sim 10 \%$): ${ }^{1} \mathrm{H}$ NMR (taken in a mixture with bis-allylation product) $\delta 1.25\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right)$, $2.30(\mathrm{~m}, 3 \mathrm{H}, 4-\mathrm{H}, 7-\mathrm{H}, 7 \mathrm{a}-\mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 3.54(\mathrm{~m}, 1$ H, 1-H), 3.76 (s, 3 H, OMe), 5.70 (m, 2 H, 2-H, 3-H), 6.80 (d, J $\left.=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.04\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\right.$ H); MS (EI) m/z (\%) 240 (27, M ${ }^{++}$), 173 (100).
(R)-(+)-1-Phenyl-3-phenoxy-1-butene (102) was prepared by following the literature procedure ${ }^{11}$ from carbonate (R)-(+)-101 (360 mg, 1.64 mmol) and phenol ($160 \mathrm{mg}, 1.7$ mmol) in 75% yield ($276 \mathrm{mg}, 1.23 \mathrm{mmol}$): $[\alpha]_{\mathrm{D}}+81.7$ (c 2.1,
CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\delta 1.52(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{Me}), 4.97$ (p, J $=6.3 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), 6.28 (dd, J = 16.0, $6.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), 6.60 $(\mathrm{d}, \mathrm{J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 6.88-7.38\left(\mathrm{~m}, 10 \mathrm{H}\right.$, arom); ${ }^{13} \mathrm{C}$ NMR $\delta 22.2\left(4-\mathrm{CH}_{3}\right)$; 74.9 (3-CH); 116.6 ($2^{\prime \prime}, 6^{\prime \prime}-\mathrm{CH}$), 121.2 ($4^{\prime \prime}-$ CH), $127.1\left(2^{\prime \prime}, 5^{\prime \prime}-\mathrm{CH}\right), 128.1(\mathrm{CH}), 129.0$ and $129.8\left(2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}-\right.$ CH), 131.1 (CH), 131.2 (CH), 137.0 ($\left.1^{\prime}-\mathrm{C}\right), 158.5$ ($1^{\prime \prime}-\mathrm{C}$); MS (FAB) m/z (\%) 224 (8, M ${ }^{+}$), 131 (100).

Rearrangement of (R)-(+)-102 in the Presence of Lewis-Acid Catalysts. Method A. A solution of (R)-(+)-102 ($70 \mathrm{mg}, 0.31 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was treated with the catalyst B as described in the General Procedure for Allylic Substitution. After 20 h at room temperature, the usual workup afforded a 50:50 mixture of $\mathbf{3 8}$ and $\mathbf{4 1}$ ($29 \mathrm{mg}, 42 \%$) identical with the compounds prepared directly from 7 and 27 (see above). GC-MS analysis of the crude product mixture showed the presence of phenol ($\sim 5 \%$). The mixture exhibited no optical rotation.

Method B. A solution of (R)-(+)-102 (60 mg, 0.27 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was treated with $\mathrm{Yb}(\mathrm{OTf})_{3}$ for 20 h at room temperature to afford a ~50:50 mixture of $\mathbf{3 8}$ and $\mathbf{4 1}$ (26 mg , 43%) with no optical rotation.

Method C. Fol lowing the literature procedure, ${ }^{24}$ a solution of (R)-(+)-102 (70 mg, 0.31 mmol$)$ in $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}(0.5 \mathrm{~mL})$ was treated with $\mathrm{Eu}(\mathrm{fod})_{3}$ at $80^{\circ} \mathrm{C}$ for 12 h to afford 103 (34 $\mathrm{mg}, 49 \%$) as a 4:1 mixture of trans/ cis-isomers and unreacted starting material ($17 \mathrm{mg}, 24 \%$).
(E)-1-Phenyl-1-(2'-hydroxyphenyl)-2-butene ((E)-103): ${ }^{28,37 \mathrm{~b}}{ }^{1} \mathrm{H}$ NMR δ (taken in a mixture with the (Z)-isomer) 1.75 $(\mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{Me}), 4.86(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}$ and OH$), 5.49$ (qdd, J = 15.4, 6.6, $1.3 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), 5.95 (ddq, J = 15.4, 7.1, $1.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 6.79-7.34$ (m, 9 H , arom), in accordance with the literature. HPLC on Chiralcel OD-H column with a 98.5:1.5 hexane-2-propanol mixture showed 76% ee ($\mathrm{t}_{\text {major }}=$ 25.7 min ; the minor enantiomer had $\mathrm{t}_{\text {minor }}=25.0 \mathrm{~min}$; flow rate $0.5 \mathrm{~mL} / \mathrm{min}$).
(Z)-1-Phenyl-1-(2'-hydroxyphenyl)-2-butene ((Z)-103): ${ }^{1} \mathrm{H}$ NMR δ (taken in a mixture with the (E)-isomer) 1.73 (d, J $=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{Me}), 5.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}, 3-\mathrm{H}), 5.49(\mathrm{qd}$, $\mathrm{J}=10.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.89(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 6.79-7.34(\mathrm{~m}$, 9 H , arom). HPLC analysis on Chiralcel OD-H col umn (98.5: 1.5 hexane-2-propanol) of a sample containing mainly the (E)isomer showed $\geq 80 \%$ ee, but the low content of the (Z)-isomer did not allow us to determine its ee accurately ($\mathrm{t}_{\text {major }}=31.5$ $\mathrm{min} ; \mathrm{t}_{\text {minor }}=30.5 \mathrm{~min}$; flow rate $0.5 \mathrm{~mL} / \mathrm{min}$).
(R)-(+)-1-Phenyl-3-(2-naphthoxy)-1-butene (104) was prepared by following the literature procedure ${ }^{11}$ from carbonate (R)-(+)-101 ($150 \mathrm{mg}, 0.68 \mathrm{mmol}$) and 2-naphthol (100 mg , 0.69 mmol) in 86% yield ($161 \mathrm{mg}, 0.59 \mathrm{mmol}$): $[\alpha]_{\mathrm{D}}+233.3$ (c 2.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\delta 1.54(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{Me}), 5.06$ (p, J = 6.3 Hz, 1H,3-H), 6.30 (dd, J $=16.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), $6.63(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 7.12-7.72(\mathrm{~m}, 12 \mathrm{H}$, arom); ${ }^{13} \mathrm{C}$ NMR $\delta 22.2\left(4-\mathrm{CH}_{3}\right)$; $75.0(3-\mathrm{CH})$; $109.6(\mathrm{CH}), 120.1(\mathrm{CH})$, $124.2(\mathrm{CH}), 126.8(\mathrm{CH}), 127.0$ and 129.1 ($\left.2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}-\mathrm{CH}\right), 127.3$ (CH), 128.1 (CH), 128.3 (CH), 129.5 (C), 129.9 (CH), 131.1 (CH), 131.2 (CH), 135.1 (C), 137.0 (C), 156.4 (2"-C); MS (EI) $\mathrm{m} / \mathrm{z}(\%) 274$ (12, M•+), 131 (100).

Rearrangement of $(R)-(+)-102$ in the Presence of Lewis-acid Catalysts. Method A. A solution of (R)-(+)-104 ($30 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was treated with the catalyst B. After 8 h at room temperature, the usual workup afforded 105 ($21 \mathrm{mg}, 70 \%$).

1-Phenyl-3-(2'-hydroxynaphthyl)-1-butene (105): ${ }^{1} \mathrm{H}$ NMR $\delta 1.63(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{Me}), 4.64(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 1$ $\mathrm{H}, 3-\mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.74(\mathrm{~s}, 2 \mathrm{H}, 1,2-\mathrm{H}), 7.04-8.05(\mathrm{~m}$, 11 H , arom); ${ }^{13} \mathrm{C}$ NMR δ (acetone-d 6) $19.8\left(4-\mathrm{CH}_{3}\right) ; 35.3$ (3CH); $119.8(\mathrm{CH}), 123.7(\mathrm{CH}), 124.1$ (C), 124.9 (CH), 127.1 (CH), 127.3 and 129.7 ($2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}-\mathrm{CH}$), 128.0 (CH), 129.4 (CH), 129.5 (CH), 130.1 (CH), 130.9 (C), 134.4 (C), 136.7 (CH), 139.4 (C), 153.5 (2"-C); MS (EI) m/z (\%) 274 (100, M ${ }^{++ \text {). GC-MS analysis }}$ of the crude product mixture showed the presence of naphthol ($\sim 5 \%$). The product had no optical rotation and HPLC on Chiralcel OD-H column with a 95:5 hexane-2-propanol mixture revealed equal amounts of the two enantiomers ($\mathrm{t}=17.2$ \min and $\mathrm{t}=18.4 \mathrm{~min}$; flow rate $0.5 \mathrm{~mL} / \mathrm{min}$).

Method B. Analogously, a solution of (R)-(+)-104 (30 mg, $0.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was treated with $\mathrm{Yb}(\mathrm{OTf})_{3}$ for 12 h at room temperature to afford $\mathbf{1 0 5}$ ($17 \mathrm{mg}, 57 \%$) with no optical rotation detected.

Method C. Following the literature procedure, ${ }^{24}$ a solution of (R)-(+)-104 ($35 \mathrm{mg}, 0.13 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}(0.5 \mathrm{~mL})$ was treated with $\mathrm{Eu}(f \circ \mathrm{fo})_{3}$ for 12 h at $80^{\circ} \mathrm{C}$ to afford 106 (16 $\mathrm{mg}, 46 \%$) as a $4: 1$ mixture of trans/ cis-isomers. The trans-isomer was separated from the mixture by preparative HPLC on Partisil 10 column with a 95:5 mixture hexanes-ethyl acetate.
(E)-1-Phenyl-1-(2'-hydroxynaphthyl)-2-butene (106): ${ }^{1} \mathrm{H}$ NMR $\delta 1.77(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{Me}), 5.6(\mathrm{~m}, 2 \mathrm{H}, 1,3-\mathrm{H})$, 5.83 (s, 1H, OH), 6.20 (ddq, J = 15.4, 6.3, 1.6 Hz, $1 \mathrm{H}, 2-\mathrm{H}$), 7.08-7.93 (m, 11 H , arom); ${ }^{13} \mathrm{C}$ NMR $\delta 18.4\left(4-\mathrm{CH}_{3}\right)$; 45.6 (1CH); 119.7 (CH), 119.8 (C), 123.2 (CH), 123.5 (CH), 127.0 (CH), 127.2 (CH), 128.5 and 129.2 ($\left.2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}-\mathrm{CH}\right), 129.3$ (CH), 129.7 (CH), 130.0 (C), 130.3 (CH), 132.1 (CH), 133.4 (C), 141.9 (C), 153.0 ($2^{\prime \prime}-\mathrm{C}$); MS (EI) m/z (\%) 274 (100, M•+). HPLC on Chiralcel OD-H column with a 95:5 hexane-2-propanol mixture showed 82% ee ($\mathrm{t}_{\text {major }}=15.8 \mathrm{~min}, \mathrm{t}_{\text {minor }}=14.6 \mathrm{~min}$; flow rate $0.5 \mathrm{~mL} / \mathrm{min}$).

1-Phenoxycyclohex-1-ene (107). ${ }^{38}$ To a stirred solution of cyclohex-2-en-1-ol ($500 \mathrm{mg}, 5.10 \mathrm{mmol}$), phenol (27) (590 mg , 6.27 mmol), and triphenyl phosphine ($1.638 \mathrm{~g}, 6.25 \mathrm{mmol}$) in THF (30 mL) at $-20^{\circ} \mathrm{C}$ was added dropwise diethyl azodicarboxylate ($1.088 \mathrm{~g}, 6.25 \mathrm{mmol}$). The reaction mixture was allowed to warm to room temperature and the stirring continued for 4 h . The solvent was removed under reduced pressure, and the residue was extracted with hexane (3×20 mL). The hexane solution was concentrated in vacuo and passed through a silica gel column ($15 \times 2 \mathrm{~cm}$) with a 9:1 hexanes-ethyl acetate mixture as eluent to furnish the ether 107 ($680 \mathrm{mg}, 77 \%$): ${ }^{1} \mathrm{H}$ NMR $\delta 1.55-2.18\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right.$), 4.78 (m, $1 \mathrm{H}, 3-\mathrm{H}), 5.80(\mathrm{dm}, \mathrm{J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 6.04$ (dt, $\mathrm{J}=10.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 6.90\left(\mathrm{~m}, 3 \mathrm{H}, 2^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$, 7.26 (t, J $\left.=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta 19.5,25.5$, $28.8\left(4,5,6-\mathrm{CH}_{2}\right), 71.2(3-\mathrm{CH}), 116.3\left(2^{\prime}, 6^{\prime}-\mathrm{CH}\right), 121\left(4^{\prime}-\mathrm{CH}\right)$, 126.9 and 132.5 (1,2-CH), 129.9 ($3^{\prime} 5^{\prime}-\mathrm{CH}$), 158.3 ($\left.1^{\prime}-\mathrm{C}\right) . \mathrm{MS}$ (EI) m/z (\%) 174 (0.7, M^{++}), 80 (100).

Rearrangement of the Ether 107 in the Presence of the Catalyst B. Treatment of $\mathbf{1 0 7}(\mathbf{1 0 0} \mathrm{mg}, 0.57 \mathrm{mmol})$ with the catalyst B ($5 \mathrm{~mol} \%$) for 20 h afforded a multiproduct mixture. The major components of the mixture were separated by column chromatography on silica gel ($15 \times 2 \mathrm{~cm}$) with a 9:1 hexanes-ethyl acetate mixture as eluent and identified as follows (in order of elution): the starting material 107 (15 $\mathrm{mg}, 15 \%$), 1-(2'-hydroxyphenyl)cyclohex-2-ene (71) (36 mg , 36\%), identical with the compound prepared directly from 17 and 27 (see above), and 3-(4'-hydroxyphenyl) cyclohexene ${ }^{39}$ (10 $\mathrm{mg}, 10 \%)$. The GC-MS analysis of the crude product mixture also showed the presence of several poly-allylated products and phenol ($\sim 5 \%$). 1-(4'-Hydroxyphenyl)cyclohex-1-ene: ${ }^{39}{ }^{1} \mathrm{H}$ NMR $\delta 1.50-2.18\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 3.28(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.65(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{OH}), 5.68(\mathrm{dm}, \mathrm{J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.86$ (ddd, J = 10.1, $6.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 6.75\left(\mathrm{~d}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.07(\mathrm{~d}, 2 \mathrm{H}$, $\left.3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right)$.

Acknowledgment. Wethank the EPSRC for Grants No. GR/H92067 and GR/K07140, EPSRC and GlaxoWellcome PLC for a CASE award to S.L.D., and AgrEvo Ltd. for additional support.

Supporting Information Available: MS and HRMS spectral characteristics and elemental analyses for new compounds and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for the new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.
J O982178Y

[^12]
[^0]: * Correspondence author. E-mail: PK10@Le.ac.uk.
 \dagger University of Leicester.
 \# Current address: Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
 § GlaxoWellcome PLC.
 (1) Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic Molecules; University Science Books: Mill Valley, CA, 1994.
 (2) F or key references, see: (a) Trost, B. M.; Strege, P. E. J. Am. Chem. Soc. 1975, 97, 2534. (b) Trost, B. M.; Verhoeven, T. R. J. Org. Chem. 1976, 41, 3215. (c) Hayashi, T.; Hagihara, T.; Konishi, M.; Kumada, M. J . Am. Chem. Soc. 1983, 105, 7767. For reviews, see: (d) Trost, B. M. Tetrahedron 1977, 33, 371. (e) Trost, B. M. Acc. Chem. Res. 1980, 13, 385. (f) Tsuji, J. Tetrahedron 1986, 42, 4361. (g) Frost, C. G.; Howarth, J.; Williams, J . M. J . Tetrahedron: Asymmetry 1992, 3, 1089. (h) Trost, B. M. PureAppl. Chem. 1996, 68, 779. (i) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
 (3) Temple, J. S.; Schwartz, J. J. Am. Chem. Soc. 1980, 102, 7381. (b) Matsushida, H.; Negishi, E. J . Chem. Soc., Chem. Commun. 1982, 160. (c) Temple, J. S.; Riediker, M.; Schwartz, J. J. Am. Chem. Soc. 1982, 104, 1310. (d) Labadie, J. W.; Stille, J. K. J. Am. Chem. Soc. 1983, 105, 6129. (e) Goliaszewski, A.; Schwartz, J. J. Am. Chem. Soc. 1984, 106, 5028. (f) Keinan, E.; Roth, Z. J. Org. Chem. 1983, 48, 1769.
 (4) Consiglio, G.; M orandini, F.; Piccolo, O. J. Am. Chem. Soc. 1981, 103, 1846. (b) Consiglio, G.; Piccolo, O.; Roncetti, L.; Morandini, F. Tetrahedron 1986, 41, 2043. (c) Didiuk, M. T.; Morken, J. P.; H oveyda, A. H. J. Am. Chem. Soc. 1995, 117, 7273. (d) Didiuk, M. T.; M orken, J. P.; Hoveyda, A. H. Tetrahedron 1998, 54, 1117.
 (5) Starý, I.; K očovský, P. J. Am. Chem. Soc. 1989, 111, 4981. (b) Starý, I.; Zajíček, J.; Kočovský, P. Tetrahedron 1992, 48, 7229. (c) Kurosawa, H.; Ogoshi, S.; Kawasaki, Y.; Murai, S.; Miyoshi, M.; Ikeda, I. J. Am. Chem. Soc. 1990, 112, 2813. (d) Kurosawa, H.; Kajimaru, H.; Ogoshi, S.; Y oneda, H.; Miki, K.; Kasai, N.; Murai, S.; I keda, I. J . Am. Chem. Soc. 1992, 114, 8417.
 (6) Krafft, M. E.; Wilson, A. M.; Fu, Z.; Procter, M. J .; Dasse, O. A. J . Org. Chem. 1998, 63, 1748.
 (7) Farthing, C. N.; K očovský, P. J . Am. Chem. Soc. 1998, 120, 6661.

[^1]: (8) Faller, J. W.; Linebarrier, D. Organometallics 1988, 7, 1670. (b) Ward, Y. D.; Villanueva, L. A.; Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118, 897.
 (9) Dvořák, D.; Starý, I.; K očovský, P. J. Am. Chem. Soc. 1995, 117, 6130
 (10) F or demonstrating the overall retention of configuration in Mo-(0)-catalyzed reactions, see: (a) Trost, B. M.; Lautens, M. J . Am. Chem. Soc. 1982, 104, 5543. (b) Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1983, 105, 3343. (c) Trost, B. M.; Lautens, M. Organometallics 1983, 2, 1687. (d) Trost, B. M.; Lautens, M.; Peterson, B. Tetrahedron Lett. 1983, 24, 4525. (e) Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1987, 109, 1469. (f) Trost, B. M.; Lautens, M. Tetrahedron 1987, 43, 4817. (g) Trost, B. M.; Merlic, C. A. J . Am. Chem. Soc. 1990, 112, 9590.
 (11) Goux, C.; Massacret, M.; Lhoste, P.; Sinou, D. Organometallics 1995, 14, 4585.
 (12) Malkov, A. V.; Baxendale, I. R.; Dvořák, D.; Mansfield, D. J .; K očovský, P. J. Org. Chem. 1999, 64, 2737-2750.

[^2]: (13) Dvořáková, H.; Dvořák, D.; Šrogl, J .; K očovský, P. Tetrahedron Lett. 1995, 35, 6351. (b) Malkov, A. V.; Baxendale, I. R.; Mansfield, D. J .; K očovský, P. Tetrahedron Lett. 1997, 38, 4895. (c) Malkov, A. V. Davis, S. L.; Mitchell, W. L.; K očovský, P. Tetrahedron Lett. 1997, 38, 4899.
 (14) Abbott, A. P.; Malkov, A. V.; Zimmermann, N.; Raynor, J . B.; Ahmed, G.; Steele, J. K očovský, P. Organometallics 1997, 16, 3690.
 (15) Bowden, J. A.; Colton, R. Aust. J. Chem. 1968, 21, 2657. (b) Cotton, F. A.; Falvello, L. R.; Meadows, J. H. Inorg. Chem. 1985, 24, 514. (c) Cotton, F. A.; Poli, R. Inorg. Chem. 1987, 26, 1514.
 (16) Baker, P. K.; Bury, A. J . Organomet. Chem. 1989, 359, 189. (b) Baker, P. K.; Quinlan, A. J. Inorg. Chem. 1989, 28, 179. (c) Miguel, D.; Perez-Martinez, J. A.; Garcia-Granda, S. Polyhedron 1991, 10, 1717. (d) Cano, M.; Panizo, M.; Campo, J. A.; Tornero, J.; Menendez, N. J . Organomet. Chem. 1993, 463, 121.

[^3]: (17) F or overviews on the Friedel-Crafts reaction, see: (a) Roberts, R. M.; Khalaf, A. A. Friedel-Crafts Alkylation Chemistry: A Century of Discovery; M. Dekker: New Y ork, 1984. (b) Heaney, H. In Compre hensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, U.K., 1991; Vol. 2, pp 733 and 753. (c) Olah, G. A.; Krishnamurti, R.; Prakash, G. K. S. Ibid, Vol. 3, p 893.
 (18) Aside from the standard Friedel-Crafts reactions, allylation of highly oxygenated aromatic rings with cationic organometallic π-complexes has also been reported: (a) Harman, W. D.; Sekine, M.; Taube, H. J. Am. Chem. Soc. 1988, 110, 5725. (b) Kopach, M. E.; Gonzalez, J.; Harman, W. D. J. Am. Chem. Soc. 1991, 113, 8972. (c) Kopach, M. E.; Harman, W. D. J. Org. Chem. 1994, 59, 6506. (d) Malkov, A. V.; Mojovic, L.; Stephenson, G. R.; Turner, A. T.; Downie, J. A.; Wilson, K. E.; Creaser C. S. Manuscript in preparation. For the reactivity of Os-coordinated aromatics, see: (e) Kolis, S. P.; Kopach, M. E.; Liu, R.; Harman, W. D. J. Org. Chem. 1997, 62, 130 and references given therein.

[^4]: (19) This particular reaction is also completed at $-10^{\circ} \mathrm{C}$ in 30 min .
 (20) The products structure was corroborated by NMR spectrometry, including 2D-NMR experiments (e.g., NOESY) in more complicated cases. For details, see the Experimental Section.

[^5]: (21) The bis(allyl) derivative was obtained as a $\sim 1: 1$ mixture of diastereoisomers, which could not be separated and fully characterized. However, the HRMS and NMR data are fully supportive of its structure. Moreover, the latter problem was avoided by utilizing cinnamyl acetate (8).

[^6]: (23) Fiaud, J .-C.; Legros, J.-Y. J. Org. Chem. 1987, 52, 1907.

[^7]: (24) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1998, 120, 815. (b) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1998, 120, 9074.

[^8]: (25) Note that the stereochemical course of the O-allylation could not be established with the Trost system ${ }^{24}$ as the carbonate 97 forms a meso- π-allyl complex.
 (26) The (R)-configuration for (+)-102 ($[\alpha]_{\mathrm{D}}+81.7$; c 2.1 in CHCl_{3}) and $(+)-104\left([\alpha]_{D}+233.3\right.$; c 2.0 in $\left.\mathrm{CHCl}_{3}\right)$ is assumed in view of the double inversion mechanism demonstrated for this type of reaction by Sinou ${ }^{11}$ but not rigorously proven. N ote that other O-nucleophiles are also known to react via the inv-inv mechanism; for an overview, see the references list in ref 5b. The ee for the latter aryloxy compounds could not be determined since their maximum optical rotations are unknown and we failed to separate the enantiomers of the corresponding racemates on the available chiral columns.
 (27) Interestingly, the Mitsunobu reaction of (\pm)-4-phenyl-but-3-en-2-ol with PhOH (DEAD, Ph $\mathrm{P}, \mathrm{THF}, \mathrm{rt}, 4$ h) gave a 67:33 mixture of $(\pm)-102$ and its allylic isomer.
 (28) The spectral characteristics for (R)-103 are identical to those reported for the corresponding racemate. The (R)-configuration for both 103 and 106 is assumed in view of the prevailing chairlike transition state for the Claisen rearrangement, proposed by Trost. ${ }^{24} \mathrm{For}(\pm)$-103, see: Albergola, A.; Gonzalez-Ortega, A.; Pedrosa, R.; Vicente, M. Synthesis 1984, 238.
 (29) For review, see: (a) Mitsunobu, O. Synthesis 1981, 1. (b) Shull, B. K.; Sakai, T.; Nichols, J. B.; K oreeda, M. J . Org. Chem. 1997, 62, 8294.

[^9]: (30) Shimizu, I.; Sakamoto, T.; K awaragi, S.; Maruyama, Y.; Yamamoto, A. Chem. Lett. 1997, 137.
 (31) Nishibayashi, Y.; Yamanashi, M.; Takagi, Y.; Hidai, M. J . Chem. Soc., Chem. Commun. 1997, 859.
 (32) Bernard, A. M.; Cocco, M. T.; Onnis, V.; Piras, P. P. Synthesis 1997, 41. (b) Bernard, A. M.; Cocco, M. T.; Onnis, V.; Piras, P. P. Synthesis 1998, 256.

[^10]: (33) F or the notation and detailed discussion of related cyclizations, see, e.g.: (a) K očovský, P.; Stieborová, I. J . Chem. Soc., Perkin Trans. 1 1987, 1969. (b) K očovský, P.; Pour, M. J. Org. Chem. 1990, 55, 5580.
 (34) Grieco, P. A.; DuBay, W. J.; Todd, L. J. Tetrahedron Lett. 1996, 37, 8707. (b) Henry, K. J.; Grieco, P. A. J. Chem. Soc., Chem. Commun. 1993, 510.
 (35) Allylic acetates references are as follows. 7: (a) Goering, H. L.; Seits, E. P., J r.; Tseng, C. C. J . Org. Chem. 1981, 46, 5304. 15: (b) shida, T.; Asakawa, Y.; Okano, M.; Aratani, T. Tetrahedron Lett. 1977, 18, 2437. 16 and 17: (c) Lessard, J.;Tan, P.V. M.; Martino, R.; Sanders, J. K. Can. J . Chem. 1977, 55, 1015. 18: (d) Masatoshi, A.; Bull. Chem. Soc. J pn. 1990, 63, 721. (e) Shono, T.; Ikeda, A. J. Am. Chem. Soc. 1972, 94, 7892. 19: (f) Hansson, S.; Heumann, A.; Rein, T.; Åkermark, B. J. Org. Chem. 1990, 55, 975. 20: (g) Michejda, C. J.; Comnick R. W. J. Org. Chem. 1975, 40, 1046. 21: (h) Suga, K.; Watanabe, S.; Hijikata, K. Aust. J. Chem. 1971, 24, 197. 22: (i) Bergstrom, D. E.; Ruth, J . L.; Warwick, P. J. Org. Chem. 1981, 46, 1432. 23: (j) Trost, B.; Verhoeven, T. R. J. Am. Chem. Soc. 1980, 102, 4730. 24 and 25: ref 3 g . Enantiomerically pure acetate (R)-(+)-7 was obtained by acetylation of the enantiomerically pure al cohol which, in turn, was obtained from the racemate by Sharpless epoxidation in kinetic resolution mode and had $[\alpha]_{\mathrm{D}}+24.5$ ($\mathrm{c} 2.5, \mathrm{CHCl}_{3}$).5b,12
 (36) Zhou, B.; Xu, Y. J . Org. Chem. 1988, 53, 4419.

[^11]: (37) Previously described products of the allylation are the following. 39: (a) Hase, T. Acta Chem. Scand. 1969, 23, 2403. (b) Wenkert, E.; Fernandes, J. B.; Michelott, E. L.; Swindell, C. S. Synthesis 1983, 701. 40: ref 37b and (c) Dewar, M. J. S.; Nahlovsky, B. D. J. Am. Chem. Soc. 1974, 96, 460. 42: ref 37c. 46: (d). Viktorova, E. A.; Shujkin, N. I.; Karakhanov, E. A. Izv. Akad. Nauk SSSR, Ser Khim 1964, 2216. 47: (e) J urd, L.; Stevens, K.; Manners, G. Tetrahedron 1973, $29,2347$. (f) J imenez, M. C.; Leal, P.; Miranda, M. A.; Tormos, R. J. Org. Chem. 1995, 60, 3243. 55: (g) Tarnopol'skii, Yu. I.; Belov, V. N. Khim. Geterotsikl. Soedin. 1967, 10. 65: (h) Kamigata, 'N.; Satoh, H.; K ondoh, T.; Kameyama, M. Bull. Chem. Soc. J pn. 1988, 61, 3575. 70: (i) Birch, A. J.; Nadamuni, G. J. Chem. Soc., Perkin Trans. 1 1974, 545. 71: (j) Fráter, G.; Schmid, H. Hevv. Chim. Acta 1967, 50, 255. 72: (k) Majumdar, K. C.; Kundu, A. K. Can. J . Chem. 1995, 73, 1727. 73: (I) Kuhn, R.; Weiser, D. Chem. Ber. 1955, 88, 1601 and 1603. 77: ref 37h. 78: ref 37i. 81: (m) Tzeng, Y.-L.; Yang, P.-F.; Mei, N.-W.; Yuan, T.M.; Yu, C.-C.; Luh, T.-Y. J . Org. Chem. 1991, 56, 5289. 82: (n) Gnichtel, H.; Beier, M. Liebigs Ann. Chem. 1981, 312. (o) Zimmerman, H. E.; Swafford, R. L. J. Org. Chem. 1984, 49, 3069. (p) Hixson, S. S.; Gallucci, C. R. J. Org. Chem. 1988, 53, 2713. (q) Del Vale, L. Stille, J. K.; Hegedus, L. S. J . Org. Chem. 1990, 55, 3019. (r) Tofeva M. M.; Richard, J. P. J. Am. Chem. Soc. 1996, 118, 11434. (s) Robbins, R. J.; Ramamurthy, V. Chem. Commun. 1997, 1071. 83: (t) Aniol, M.; Lusiak, P.; Wawrzenczyk, Cz. Heterocycles 1994, 38, 991. 84: ref 37t and (u) Hurd, C. D.; Hoffman, W. A. J. Org. Chem. 1940, 5, 212. (v) Bader, A R. J. Am. Chem. Soc. 1956, 78, 1709. (w) Bader, A. R.; Bean, W. C. J Am. Chem. Soc. 1958, 80, 3073. (x) Birch, A. J.; Maung, M.; Pelter, A. Aust. J. Chem. 1969, 72, 1923. (y) Hlubucek, J .; Ritchie, E.; Taylor, W. C. Aust. J. Chem. 1971, 24, 2355. (z) Dewhirst, K. C.; Rust, F. F. J Org. Chem. 1963, 28, 798. (aa) Alberola, A.; Ortega, A. G.; Pedrosa, R.; Bragado, J. L. P.; Amo-Rodriquez, J. F. J. Chem. Soc., Perkin Trans. 1 1983, 1209. 85: ref 37t. 86: ref 37h,t. 103: (bb) Alberola, A.

[^12]: (38) Paquette, L. A.; Wilson, S. E.; Henzel, R. P. J. Am. Chem. Soc. 1972, 94, 7771
 (39) Kozlikovskii, Y a. B.; K oshchii, V. A.; Nesterenko, S. A. Zh. Org. Khim. 1985, 21, 775.

